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1. Introduction

In the last decade, several hadrons that cannot be described by an ordinary quark-antiquark pair
were observed in experiments. Their quantum numbers are, however, consistent with a four-quark
structure. One prominent example is the electrically charged states /1 (10610)+ and /1 (10650)+
[1]. Their masses and decay channels strongly suggest a 1̄1 pair, but their non-vanishing electrical
charge indicates the presence of another light quark-antiquark pair.

These experimental results triggered many theoretical studies of tetraquarks, which are often
extremely challenging, in particular when several decay channels exist. In this work we are focusing
on less difficult four-quark systems composed of two heavy antiquarks &̄&̄ ′ with &,& ′ ∈ {1, 2}
and two light quarks @@′ with @, @′ ∈ {D, 3, B}. This particular quark structure &̄&̄ ′@@′ is very
promising with respect to the formation of hadronically stable tetraquarks, as there is evidence that
in the limit of large heavy quark masses such tetraquarks exist (see e.g. Refs. [2–5]).

In previous lattice-QCD studies the Born-Oppenheimer approximation was used extensively
to investigate the 1̄1̄D3 system. Those studies predicted a bound state with quantum numbers
� (�%) = 0(1+) and binding energy ≈ 60MeV . . . 90MeV [6–11]. Moreover, a resonance with
quantum numbers � (�%) = 0(1−) was found, which has a resonance energy ≈ 20MeV above the
�� threshold and a width Γ ≈ 100MeV [12]. More rigorous full lattice-QCD studies recently
confirmed the hadronically stable 1̄1̄D3 tetraquark and predicted another bound state for 1̄1̄DB,
while the situation is less clear for 1̄2̄D3 [13–19]. In the following we give an update on our
ongoing full lattice-QCD investigations of 1̄1̄D3, 1̄1̄DB and 1̄2̄D3 tetraquarks.

2. Lattice Setup

We use gauge-link configurations generated by the RBC and UKQCD collaborations with 2+1
flavors of domain-wall fermions and the Iwasaki gauge action [20, 21]. Details of the ensembles
are collected in Tab. 1. They differ in the lattice spacing, the lattice extent and the pion mass. One
of the ensembles has a pion mass equal to the physical pion mass. In the following we show and
discuss results only for selected ensembles, but computations were always performed on all five
ensembles, e.g. to study the pion-mass dependence of the binding energy and finite volume effects
via a scattering analysis for the 1̄1̄D3 system (see Ref. [17] for details).

Ensemble #3
B × #C 0 [fm] 0<D;3 0<B <c [MeV]

C00078 483 × 96 0.1141(3) 0.00078 0.0362 139(1)
C005 243 × 64 0.1106(3) 0.005 0.04 340(1)
C01 243 × 64 0.1106(3) 0.01 0.04 431(1)
F004 323 × 64 0.0828(3) 0.004 0.03 303(1)
F006 323 × 64 0.0828(3) 0.006 0.03 360(1)

Table 1: Gauge-link ensembles [20, 21] used in this work. #B , #C : number of lattice sites in spatial and
temporal directions; 0: lattice spacing; 0<D;3: bare up and down quark mass; 0<B: bare strange quark mass;
<c : pion mass.
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We used spatially smeared point-to-all propagators for all quark flavors. Bottom propagators
are computed in the NRQCD framework [22, 23] and charm propagators correspond to a relativistic
heavy quark action [24].

3. Interpolating Operators

Two distinct types of interpolating operators are used in our investigation. The first type
corresponds to local operators, where all four-quarks are centered at the same point in space. We
consider local meson-meson as well as local diquark-antidiquark structures. The second type of
interpolating operators corresponds to non-local or scattering operators. They describe two spatially
separated independent mesons. In case the ground state in a given sector is a four-quark bound state,
we expect that the local operators will generate a good overlap to that state. Since meson-meson
scattering states are expected to be rather close, we consider it extremely important to also include
scattering operators. Only the combination of both types of interpolating operators might allow
to accurately resolve all low lying states and to isolate a possibly existing stable tetraquark from
scattering states.

In detail, our interpolating operators are given by

Oloc,"" ∝
∑

x
"1(x) "2(x) (1)

Oloc,�3 ∝
∑

x
&̄01 W 9C&̄

1
2 (x) @

0
1CW5Γ2@

1
2 (x) (2)

Oscatt,"" ∝
∑

x
"1(x)

∑
y
"2(y), (3)

where we use the notation " 9 (x) = &̄ 9Γ 9@ 9 (x) for mesonic interpolators and C denotes the charge
conjugation matrix. For each flavor and � (�%) sector, we consider the diquark-antidiquark operator
(2) and several meson-meson operators as listed in Tab. 2. For 1̄1̄D3 and 1̄2̄D3 we study � = 0. The
anti-symmetric flavor combination is realized via

∑
x ("1(x) "2(x) − D ↔ 3).

1̄1̄D3 1̄1̄DB 1̄2̄D3

� (�%) 0(1+) 1
2 (1
+) 0(0+) 0(1+)

��∗, �∗�∗ �B�
∗, �∗B�, �∗B�∗ �� ��∗, �∗�

Table 2: Meson-meson operators considered for each flavor and � (�%) sector. For pseudoscalar mesons we
use Γ1,2 = W5, for vector mesons we use Γ1,2 = W 9 .

4. Energy Levels of the &̄&̄′@@′ Systems

We computed correlation matrices � 9: (C) = 〈O 9 (C)O†: (0)〉, where O 9 and O: are the inter-
polating operators defined in the previous section. We present a schematic representation of the
necessary Wick contractions in Fig. 1. Since our computations are currently based on point-to-
all propagators, the resulting matrix is restricted to elements with a local operator at the source.
Consequently, � 9: (C) are not a square matrices.
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To extract the low-lying energy eigenvalues, we performed simultaneous multi-exponential fits
to all matrix elements using a truncated spectral decomposition of the correlation matrix,

� 9: (C) ≈
#−1∑
==0

/=9 (/=: )
∗e−�=C . (4)

�= denote the energy eigenvalues and /=
9
= 〈Ω|O 9 |=〉 the overlaps of the corresponding energy

eigenstates and the trial states.

T T T T
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M2

T

M1

M2

T

M1
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T

M1

M2

T

M1 M1

M2 M2

M1 M1

M2 M2

Figure 1: Schematic representation of Wick contractions for different types of correlation matrix elements.
) represents a local tetraquark operator and "1 and "2 represent the two mesons forming a scattering
operator. Black lines correspond to heavy quark propagators, red lines to light quark propagators.

4.1 Hadronically Stable 1̄1̄D3 Tetraquark with � (�%) = 0(1+)

In Fig. 2 we present fit results for the two lowest energy levels of the 1̄1̄D3 systemwith quantum
numbers � (�%) = 0(1+). The boxes at the bottom of the plot below each fit indicate which operators
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Figure 2: Results for the two lowest energy levels of the 1̄1̄D3 system with quantum numbers � (�%) = 0(1+)
relative to the ��∗ threshold (ensemble C005).
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were included in the correlation matrix. A filled black box represents a local operator and a filled
red box a scattering operator. For each operator basis we show the fit results for the ground state
in blue and for the first excited state in green, where the energy of the lowest threshold, the ��∗

threshold, is subtracted. Above the fits, we provide the number of exponentials # used in the fit
function (4), the temporal fit range and the resulting correlated j2.

We obtain a ground-state energy significantly below the relevant ��∗ threshold, if local as
well as scattering operators are included in the correlation matrix. Moreover, the energy of the
first excited state is consistent with the ��∗ threshold. This clearly indicates a hadronically stable
tetraquark. A careful analysis based on Lüscher’s finite volume method and a chiral extrapolation
including all five ensembles from Tab. 1 results in a binding energy of (−128 ± 24)MeV with an
estimated systematic error below 10MeV. For details we refer to our recent publication [17].

We have also solved a standard generalized eigenvalue problem using the 3 × 3 square corre-
lation matrix formed by the local operators. In Fig. 3 (left) we show the normalized eigenvector
components of the ground state corresponding to the hadronically stable tetraquark. The plot
indicates that the tetraquark is a superposition of �� and ��∗ meson-meson components and of
a diquark-antidiquark component, where the meson-meson contribution dominates with ∼ 77%,
whereas the diquark-antidiquark contribution is only ∼ 23%. It is interesting to compare this result
to a recent Born Oppenheimer investigation of the structure of this tetraquark. The main result of
Ref. [11], the eigenvector components of a meson-meson and of a diquark-antidiquark interpolating
operator as functions of the 1̄1̄ separation A , is shown in Fig. 3 (right). Multiplying these curves
with the radial probability density and integrating over A led to a meson-meson contribution of
∼ 60% and a diquark-antidiquark contribution of ∼ 40%. The results of both approaches agree
that both meson-meson and diquark-antidiquark structures are present in the tetraquark with the
meson-meson component dominating.
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Figure 3: Left: Normalized eigenvector components of the ground state for the 3×3 square correlationmatrix
formed by the local 1̄1̄D3 operators (ensemble C005). Right: Born-Oppenheimer result for normalized
eigenvector components of a meson-meson and of a diquark-antidiquark interpolating operator as functions
of the 1̄1̄ separation A (figure taken from Ref. [11]).

4.2 Hadronically Stable 1̄1̄DB Tetraquark with � (�%) = 1
2 (1
+)

In Fig. 4 we present fit results for the two lowest energy levels of the 1̄1̄DB system with quantum
numbers � (�%) = 1

2 (1
+). Again there is clear evidence for a hadronically stable tetraquark with a
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binding energy of ≈ −80MeV, i.e. with a mass clearly below the relevant ��∗B threshold, while the
first excited state is consistent with that threshold. This confirms predictions of independent recent
lattice-QCD studies using a similar setup [13, 16].
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Figure 4: Results for the two lowest energy levels of the 1̄1̄DB system with quantum numbers � (�%) = 1
2 (1
+)

relative to the ��∗B threshold (ensemble C01).

As before, we also solved a standard generalized eigenvalue problem using the 4 × 4 square
correlation matrix formed by the local operators. In Fig. 5 we show the normalized eigenvector
components of the ground state and the first excited state. The left plot indicates that the meson-
meson percentage is ∼ 84%, i.e. somewhat larger than in the 1̄1̄D3 case, while the diquark-
antidiquark percentage is ∼ 16%. Interestingly, the �B�∗ and �∗B� trial states have almost identical
weights and appear either as antisymmetric flavor combination (for the ground state) or as symmetric
flavor combination (for the first excitation, when using only local operators). We consider this as
strong indication that SU(3) flavor symmetry is approximately fulfilled. This might simplify a
scattering analysis, similar to that from Ref. [17].
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Figure 5: Normalized eigenvector components for the 4 × 4 square correlation matrix formed by the local
1̄1̄DB operators (ensemble C01). Left: Ground state. Right: First excitation.
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4.3 Non-existence of Hadronically Stable 1̄2̄D3 Tetraquarks with � (�%) = 0(1+) and
� (�%) = 0(0+)

For quark flavors 1̄2̄D3 there are two relevant orthogonal channels, either symmetric with
respect to the heavy quarks or antisymmetric. A symmetric state corresponds to quantum numbers
� (�%) = 0(1+), an antisymmetric state to � (�%) = 0(0+). In Fig. 6 we present fit results for both
cases: for � (�%) = 0(1+) the two lowest energy levels, and for � (�%) = 0(0+) only the ground state
energy. In both cases the ground state energy is slightly above, but still consistent with the relevant
threshold, i.e. there is no indication for a hadronically stable tetraquarks. This supports the findings
of Refs. [18], but contradicts those of Ref. [15].
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Figure 6: Results for the lowest energy levels of the 1̄2̄D3 system. Left: � (�%) = 0(1+), energy levels
relative to the �∗� threshold. Right: � (�%) = 0(0+), energy levels relative to the �� threshold.
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