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This project aims to give indications to find monopole and instanton effects in QCD on the
observables by experiments. First, we add the monopole and anti-monopole to the QCD vacuum of
the quenched SU(3) and calculate the physical observables using the eigenvalues and eigenvectors
of the overlap Dirac operator that preserves the exact chiral symmetry. We have found that the
additional monopole and anti-monopole make the long monopole loops are closely related to
the quark confinement without changing the vacuum structure. Furthermore, we have confirmed
that the additional monopole and anti-monopole create instantons and anti-instantons are closely
associated with the chiral symmetry breaking. We have shown that the chiral condensate (minus
value) decreases in direct proportion to the square root of the number density of the instantons and
anti-instantons. The decay constants and masses of pion and kaon increase in direct proportion
to the one-fourth root of the number density of the instantons and anti-instantons. This report
estimates the eta meson mass using these outcomes as the input values, and the eta-prime meson
mass is calculated in two ways: (i) Substituting the numerical results of the topological charge and
pion decay constant to the Witten and Veneziano mass formula. (ii) Calculating the correlations of
the disconnected (hairpin) graphs. The preliminary results of the eta-prime meson mass estimated
in the quenched SU(3) are as follows. (i) mη′ = 1.055(15)×103 [MeV] (at the continuum limit).
(ii) mη′ = 1.04(2)×103 [MeV] (at the chiral and continuum limits). Finally, we demonstrate that
the eta-prime meson mass becomes heavy with increasing the number density of the instantons
and anti-instantons.
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1. Introduction

Monopoles play critical roles in the quark confinement mechanism through condensing in
the QCD vacuum [1, 2], and the instantons induce spontaneous chiral symmetry breaking [3–5].
Monopoles and instantons are closely related and interact among quarks and gluons in the QCD
vacuum [5, 6]. It is very interesting if we can show a clue to observe monopoles and instantons by
experiments. Therefore, we perform numerical simulations of lattice gauge theory and investigate
the effects of monopoles and instantons on hadrons.

First, we apply the monopole creation operator to the QCD vacuum [7] and add one pair of
monopole and anti-monopole to the vacua of the quenched SU(3), varying the magnetic charges.
Second, we estimate the monopoles and instanton effects on observables using the eigenvalues and
eigenvectors of the overlap Dirac operator that preserves the exact chiral symmetry [8–12]. Finally,
we compare the numerical results with the predictions and find quantitative relations among the
monopoles, instantons, and observables.

Previous research [13] has found that the monopole creation operator makes the monopoles
and anti-monopoles. These added monopoles and anti-monopoles form the long monopole loops in
the QCD vacuum [14] that are closely related to color confinement [15]. We have demonstrated that
one pair of additional monopole and anti-monopole with magnetic charges creates one instanton
or anti-instanton. Furthermore, the additional monopoles and anti-monopoles do not change the
vacuum structure.

We compared the numerical results with the predictions and discovered the effects of the added
monopole and anti-monopoles and the created instantons and anti-instantons on the observables as
follows [16]:

1. The added monopole and anti-monopoles do not affect the low-lying eigenvalues of the
overlap Dirac operator and only change a scale parameter of the distribution of the low-lying
eigenvalues.

2. The chiral condensate (defined as a negative value) decreases in direct proportion to the
square root of the number density of the instantons and anti-instantons.

3. The average mass of the quarks (u+d2 ) and the s-quark mass become heavy in direct proportion
to the square root of the number density of the instantons and anti-instantons.

4. The decay constants and masses of the pion and kaon increase in direct proportion to one-
fourth root of the number density of the instantons and anti-instantons.

5. The decay width of the charged pion becomes wider than that of the experimental result. As
a result, the lifetime of the charged pion becomes shorter than that of the experimental result.

We obtained these results using two lattices: The lattice volumes V are V = 144 and V = 183 × 32,
and their values of a parameter β for the lattice spacing are β = 6.000 and β = 6.052, respectively.

This research project investigates the finite lattice volume effect and the discretization effect
on these numerical results. Therefore, we generate the various configurations by varying the lattice
volumes V and values of the parameter β.
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In this report, the eta-prime meson mass is estimated by the following two calculations: (i)
Substituting the numerical results of the pion decay constant and topological susceptibility to
the mass formula derived by Witten and Veneziano [17]. (ii) Calculating the correlations of the
disconnected (hairpin) graphs of the pseudoscalar density [18]. The numerical results of the eta-
prime meson mass estimated in the quenched SU(3) are (i) mη′ = 1.055(15)×103 [MeV] (at the
continuum limit) and (ii) mη′ = 1.04(2)×103 [MeV] (at the chiral and continuum limits). These
results are reasonably consistent with the experimental result mexp.

η′ = 957.78 ± 0.06 [MeV] [19].
The preliminary results demonstrate that the eta-prime meson mass becomes heavy with increasing
the number density of the instantons and anti-instantons. Now, we are evaluating the increases by
comparing them with the predictions.

The contents of this report are as follows. In section 2, we explain the monopole creation
operator and simulation parameters very briefly. In section 3, we give the results of the number
density of the instantons and anti-instantons, chiral condensate, pion decay constant, and masses of
pion, kaon, and eta mesons. In section 3, we show new results of the mass of the eta-prime meson.
Finally, we give the summary and conclusions in section 4.

The results of this report are preliminary. We will explain the details of the computations
in [20].

2. Monopoles and instantons

This project investigates the finite lattice volume effect and the discretization effect on the
numerical results. To check the finite lattice volume effect, we set the parameter β = 6.000 and
vary the lattice volume from V = 143 × 28 to 163 × 32. Similarly, to check the discretization effect,
we set the physical lattice volume Vphys = 9.868 [fm4] and vary the lattice volumes and their values
of the parameter β as follows: V = 123 × 24, 143 × 28, 163 × 32, 183 × 32, and 203 × 40, and their
β = 5.846, 5.926, 6.000, 6.052, and 6.137, respectively.

Table 1: The simulation parameters.

β a [fm] V Conf Nconf
5.8457 0.1242 123×24 Normal conf, mc = 0 − 4 1.0 × 103 ∼ 1.2 × 103

5.9256 0.1065 143×28 Normal conf, mc = 0 − 5 8 × 102 ∼ 9 × 102

6.0000 9.3150×10−2 143×28 Normal conf, mc = 0 − 4 1.7 × 103 ∼ 1.8 × 103

163×32 Normal conf, mc = 0 − 5 8 × 102 ∼ 9 × 102

6.0522 8.5274×10−2 183×32 Normal conf, mc = 0 − 6 8 × 102

6.1366 7.4520×10−2 203×40 Normal conf, mc = 4 − 5 4 × 102

We generate the normal configurations and configurations to which we add the monopoles
and anti-monopoles, varying the magnetic charge mc from 0 to 6. We use the monopole creation
operator [7, 13]. The monopole has the positive magnetic charge of the integer number, and the
anti-monopole has the opposite magnetic charges of the monopole. We add both the monopole
and anti-monopole that have the same magnitude of magnetic charges. Thus, the total magnetic
charges are zero that are added to the configurations, and the magnetic charge mc indicates that both
magnetic charges are added. The simulation parameters are in Table 1. The values of the lattice
spacing are calculated using the formula [21].
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We then estimate the number of instantons and anti-instantons NI in the configurations using
the formula NI = 〈Q2〉 and the numerical results of the topological charge Q = n+ − n− because
we have never observed the number of zero-modes of the plus chirality n+ and the number of
zero-modes of the minus chirality n− at the same time from the same configuration. In this study,
the observed zero-modes are the topological charges, and the topological susceptibility 〈Q2 〉

V is the
number density of the instanton and anti-instantons NI

V [13].
First, to obtain the value at the continuum limit, we fit the linear function to the data of the

number density of the instanton and anti-instantons. However, the fitting results of the slope are
almost zero considering their errors. Therefore, we interpolate the number density of the instanton
and anti-instantons by the constant function. For the same reason, we interpolate the observables
by the constant function. We will show the fitting results in [20]. The numerical results of NI

V of
the configurations β = 6.000 and interpolated results shown are in Table 2.

3. Estimations of 〈ψ̄ψ〉MS, mπ, mk , mη, and Fπ

Table 2: Numerical results of the number density of the instanton and anti-instantons NI

V , renormalized
chiral condensate in the MS-scheme at 2 [GeV] 〈ψ̄ψ〉MS , pion decay constant Fπ , masses of pion mπ , kaon
mk , eta mη , and eta-prime m(i)

η′ mesons.

V = 143 × 28, β = 6.000
mc

NI
V [GeV4] 〈ψ̄ψ〉MS [GeV3] Fπ [MeV] mπ [MeV] mk [MeV] mη [MeV] m(i)

η′ [MeV]
×10−3 ×10−2 ×102 ×102 ×102 ×103

Normal conf 1.60(6) -1.96(11) 92(2) 1.40(3) 4.94(15) 5.64(17) 1.06(3)
0 1.60(5) -1.89(10) 92(2) 1.39(3) 4.88(15) 5.57(17) 1.07(3)
1 1.74(6) -2.06(12) 94(2) 1.43(3) 5.04(16) 5.76(19) 1.08(3)
2 2.23(7) -2.27(12) 99(2) 1.50(3) 5.35(16) 6.12(18) 1.16(3)
3 2.65(9) -2.40(13) 102(2) 1.54(3) 5.45(17) 6.23(2) 1.24(3)
4 2.77(10) -2.52(14) 105(2) 1.58(3) 5.60(17) 6.4(2) 1.23(3)
5 2.71(9) -2.54(13) 105(2) 1.59(3) 5.63(16) 6.44(18) 1.21(3)

V = 163 × 32, β = 6.000
Normal conf 1.54(6) -1.95(10) 92.3(1.9) 1.40(3) 4.94(15) 5.64(17) 1.04(3)

0 1.62(8) -1.96(11) 92(2) 1.40(3) 4.96(16) 5.67(19) 1.07(3)
1 1.57(7) -2.03(12) 94(2) 1.42(3) 5.07(17) 5.8(2) 1.03(3)
2 2.07(10) -2.23(12) 99(2) 1.49(3) 5.32(17) 6.1(2) 1.13(4)
3 2.17(10) -2.31(12) 101(2) 1.52(3) 5.44(18) 6.2(2) 1.13(4)
4 2.44(12) -2.45(13) 103(2) 1.56(3) 5.50(17) 6.3(2) 1.17(4)
5 2.34(11) -2.44(13) 103(2) 1.56(3) 5.54(17) 6.3(2) 1.15(4)

Interpolated results
Normal conf 1.58(3) -1.95(5) 92.2(1.0) 1.396(14) 4.94(7) 5.64(9) 1.055(15)

0 1.64(4) -1.96(6) 92.5(1.1) 1.399(17) 4.95(9) 5.66(10) 1.071(18)
1 1.75(4) -2.06(6) 94.7(1.2) 1.432(18) 5.06(9) 5.78(11) 1.082(19)
2 2.08(5) -2.21(6) 98.1(1.2) 1.484(18) 5.28(10) 6.04(11) 1.138(19)
3 2.25(5) -2.26(7) 99.3(1.2) 1.503(18) 5.36(10) 6.13(11) 1.17(20)
4 2.36(6) -2.32(6) 100.8(1.1) 1.525(16) 5.41(9) 6.18(10) 1.181(19)
5 2.44(7) -2.39(7) 102.2(1.1) 1.546(17) 5.50(9) 6.28(11) 1.18(21)

We calculate the renormalized chiral condensate in the MS-scheme at 2 [GeV] 〈ψ̄ψ〉MS , pion
decay constant Fπ , masses of pion mπ , kaon mk , and eta-prime mη′ mesons using the eigenvalues
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of the massive overlap Dirac operator and eigenvectors of the massless overlap Dirac operator [18].
The definitions of the quark propagator, massless and massive Dirac operator, bare quark masses,
notations, etc., are the same as previous research [20].

First, we calculate the correlation of the pseudoscalar density CPS and the correlation of the
scalar density CSS using the eigenvalues and eigenvectors and subtract correlations as follows:
CPS − CSS [22]. We vary the bare quark mass mq from 30 to 150 [MeV] and evaluate the
pseudoscalar mass mPS and decay constant FPS by fitting a curve to the numerical results of the
correlation CPS − CSS .

Then, we calculate the intersections by matching the experimental results of the decay constants
and masses of pion and kaon and the numerical results of the PCAC relation (m2

PS = Amq) and
determine the normalization factors [23].

The normalization constant of the scalar ZS is calculated [24, 25], and the renormalized chiral
condensate in the MS-scheme at 2 [GeV] 〈ψ̄ψ〉MS is estimated using the fitting result of the slope
A of the PCAC relation. We then estimate the decay constants and masses of pion and kaon using
the outcomes of the intersections and normalization factors. The eta meson mass mη is estimated

from the following mass formula mη =

√
4m2

k

3 − m2
π

3 using the numerical results of pion and kaon
masses. The numerical results and the interpolated results are shown in Table 2.
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Figure 1: Estimations of the eta meson mass mη . The left panel shows the numerical results of β = 6.000,
V = 143×28 and V = 163×32, and the right panel shows the interpolated results. The colored lines represent
the fitting results of the numerical results, and the black lines represent the fitting results of the predictions.

To evaluate the increases in the eta meson mass, we fit the curve mη′ = A(NI

V ) 1
4 to the numerical

results as shown in Fig 1. The prediction mPre
η is calculated using the experimental results of the

kaon, pion, and outcome of the phenomenological calculation [5].
The fitting results are as follows: (1) Prediction; A = 2.822 and χ2/d.o.f. = 0/5. (2) V = 143×28;

A = 2.80(3) and χ2/d.o.f. = 0.6/6.0. (3) V = 163 × 32; A = 2.86(4) and χ2/d.o.f. = 0.6/6.0. (4)
Interpolated results; A = 2.84(4) and χ2/d.o.f. = 0.1/6.0. The fitting results of the slope A are
consistent with the prediction and the values of χ2/d.o.f. are small. Therefore, the eta meson mass
becomes heavy in direct proportion to the one-fourth root of the number density of the instanton
and anti-instantons.

Similarly, we fit the following curves 〈ψ̄ψ〉MS = A(NI

V ) 1
2 , Fπ = A(NI

V ) 1
4 , and m = A(NI

V ) 1
4

to the numerical results. The fitting results are consistent with the predictions. Therefore, the
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renormalized chiral condensate in the MS-scheme at 2 [GeV] decreases in direct proportion to the
square root of the number density of the instanton and anti-instantons. The pion decay constant
increases in direct proportion to the one-fourth root of the number density of the instanton and
anti-instantons. The meson masses of pion, kaon, eta become heavy in direct proportion to the
one-fourth root of the number density of the instanton and anti-instantons.

4. Eta-prime meson mass

This last section estimates the eta-prime meson mass by following two computation methods.
(i) We obtain the eta-prime meson mass by substituting the numerical results of the pion

decay constant and topological susceptibility, that is, the number density of the instantons and
anti-instantons, to the following Witten and Veneziano relation of the leading-order term [17].

m(i)
η′ =

2Nf

F2
π

〈Q2〉
V
=

2Nf

F2
π

NI

V
, (Fπ ≈ 94 [MeV], Nf = 3). (1)

(ii) The eta-prime meson mass in the quenched approximation µ0 is estimated by calculating the
following correlation function Cdis−PP(∆t) of the disconnected graphs of the pseudoscalar density
OPS [18].

Cdis−PP(∆t) = a3

V

∑
t

〈
∑
®x2

OC
PS(®x2, t)

∑
®x1

OPS(®x1, t + ∆t)〉. (2)

The pseudoscalar density is OPS = ψ̄1γ5

(
1 − a

2ρ D
)
ψ2. The correlation function is defined for each

flavor. Suppose that this correlation function can be approximated by the following function of the
double poles.

Cdis−PP(t) =
ZPS

4mPS

µ2
0

Nf
[(1 + mPSt) exp(−mPSt) + {1 + mPS(T − t)} exp{−mPS(T − t)}] (3)

We fit this curve to the computed results and obtain the coefficient ZPSµ
2
0 and mPS . We substitute

the coefficient ZPS that is obtained by fitting a curve to the calculated results of the correlation
function of the connected graph of the pseudoscalar density and then estimate the eta-prime meson
mass in the quenched approximation µ0.

The computed results of the correlation function (2) varying bare quark mass from mq = 30 to
150 [MeV] do not show any divergence predicted by the chiral perturbation theory. Therefore, we
interpolate the eta-prime meson mass µ0 to the chiral limit mq → 0 by fitting the linear function.
All data points are included in a fitting range, and the fitting results of χ2/n.d. f . are less than 1.
The estimations of µ0 and their fitting results of χ2/n.d. f . of the normal configurations in Table 3
and the configurations of the additional monopoles and anti-monopoles (V = 183 × 32, β = 6.052)
in Table 4.

Last, we estimate the eta-prime meson mass m(ii)
η′ using the mass formula derived by Witten

and Veneziano and the numerical results of mπ and mk as follows:

m(ii)
η′ =

√
µ2

0 +
2m2

k

3
+

m2
π

3
(4)

6
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Figure 2: The estimations of m(i)
η′ compared with the predictions mPre(i)

η′ . The left panel shows the numerical
results of β = 6.000, V = 143 × 28 and V = 163 × 32, and the right panel shows the interpolated results.
The colored lines represent the fitting results of the numerical results, and the black lines represent the fitting
results of the predictions.

First, we estimate the eta-prime meson mass m(i)
η′ using the results of Fπ and NI

V in Table 2.
The analytical results of m(i)

η′ are in the same table.

Figure 2 show that the eta-prime meson mass m(i)
η′ becomes heavy with increases in the number

density of the instantons and anti-instantons
(
NI

V

) 1
4 . The predictions mPre(i)

η′ are estimated the
experimental results of mπ , mk , and the number of instantons that the phenomenological model
predicts [5]. To evaluate the rises, we fit the linear function mη′ = A(NI

V ) 1
4 , and the fitting results

are as follows: (1) Prediction; A = 5.309(18) and χ2/d.o.f. = 0/5. (2) V = 143 ×28; A = 5.35(6) and
χ2/d.o.f. = 0.6/6.0. (3) V = 163 × 32; A = 5.26(7) and χ2/d.o.f. = 0.3/6.0. (4) Interpolated results;
A = 5.32(3) and χ2/d.o.f. = 0.7/6.0. These fitting results indicate that the eta-prime meson mass
m(i)
η′ increases in direct proportion to the one-fourth root of the number density of the instantons and

anti-instantons.

Table 3: The results of the normal configurations

V β µ0 ×103 [MeV] χ2/n.d.f.
123×24 5.846 1.057(16) 2/19
143×28 5.926 1.057(16) 1/19
143×28 6.000 1.071(15) 3/19
163×32 6.000 1.010(15) 3/19
183×32 6.052 1.034(17) 3/19
203×40 6.136 0.96(2) 3/19

Second, we estimate the eta-prime meson mass in the quenched approximation µ0 computed
using the standard configurations and interpolate the results to the continuum limit by fitting the
linear curve µ0 = Ax + B, (x = a2, a [fm] is the lattice spacing.). The numerical results µ0

of the standard configurations are shown in Table 3. The fitting results of the interpolation are
A = 8(2) × 103 [MeV]/[fm2], µ0 = 9.5(2)×102 [MeV], and χ2/n.d.f. = 8/3. The eta-prime meson
mass of the standard configuration at the continuum limit is m(ii)

η′ = 1.04(2)×103 [MeV]. Similarly,
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the eta-prime meson mass m(ii)
η′ of the standard configurations of β = 6.000 are V = 143 × 28, m(ii)

η′

= 1.147(14)×103 [MeV] and V = 163 × 32, m(ii)
η′ = 1.090(14)×103 [MeV].
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Figure 3: Comparisons of the eta-prime meson masses m(i)
η′ and m(ii)

η′ with the prediction mPre(i)
η′ . The lattice

is V = 183 × 32, β = 6.052. The colored lines indicate the fitting results to the numerical results, and the
black line indicates the fitting result of the prediction.

Table 4: The numerical results of the eta-prime meson mass m(i)
η′ , µ0, and m(ii)

η′ comparing with the prediction
mPre
η′ . The lattice is V = 183 × 32, β = 6.052.

mc mPre
η′ ×103 [MeV] m(i)

η′ ×103 [MeV] µ0 ×103 [MeV] m(ii)
η′ ×103 [MeV] χ2/n.d.f.

Normal conf 1.0618(10) 1.02(4) 1.034(17) 1.113(16) 3/19
0 1.0618(10) 1.09(4) 0.984(16) 1.066(15) 7/19
1 1.0864(10) 1.08(4) 1.048(17) 1.130(17) 4/19
2 1.1095(10) 1.15(4) 1.082(19) 1.167(18) 7/19
3 1.1312(10) 1.19(4) 1.23(2) 1.31(2) 7/19
4 1.1517(11) 1.22(4) 1.27(2) 1.35(2) 9/19
5 1.1712(11) 1.22(4) 1.32(2) 1.39(2) 3/19
6 1.1897(11) 1.25(4) 1.42(2) 1.49(2) 6/19

Last, we compare the outcomes of m(i)
η′ and m(ii)

η′ computed using the standard configurations
and configurations that the monopoles and anti-monopoles are added with the predictions as shown
in Fig 3. The lattice is V = 183 × 32, β = 6.052, and the computed results are indicated in Table 4.

We fit two curves m(i)
η′ = A(i)(NI

V ) 1
4 for m(i)

η′ and m(ii)
η′ = A(ii)(NI

V ) 1
2 for m(ii)

η′ . The fitting results
are as follows: (1) A(i) = 5.38(7) and χ2/d.o.f. = 2/7. (2) A(ii) = 2.73(3)×10−2 [MeV−1] and χ2/d.o.f.
= 14/7. The fitting results indicate that the eta-prime meson mass m(ii)

η′ would become heavy in
direct proportion to the square root of the number density of the instantons and anti-instantons.

5. Summary and conclusions

We calculated the instanton density, evaluated renormalized chiral condensate in the MS-
scheme at 2 [GeV], and estimated the pion decay constant and masses of pion, kaon, eta, and
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eta-prime mesons using the various configurations. In addition, we investigated the finite lattice
volume effect and the discretization effect on these observables and evaluated the numerical results
at the continuum limit by interpolation.

We have confirmed that the chiral condensate decreases in direct proportion to the square root
of the number density of the instantons and anti-instantons. The pion decay constant and masses
of pion, kaon, and eta mesons increase in direct proportion to the one-fourth root of the number
density of the instantons and anti-instantons.

Two computations estimated the eta-prime meson mass. First, the eta-prime meson mass m(i)
η′

becomes heavy in direct proportion to the one-fourth root of the number density of the instantons
and anti-instantons. However, the eta-prime meson mass m(ii)

η′ becomes heavy in direct proportion to
the square root of the number density of the instantons and anti-instantons. Now we are investigating
the reason for the difference of increases.
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