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1. Introduction

Accurately disentangling ground- and excited-state effects in Euclidean correlation functions
is a critical but challenging step in lattice quantum chromodynamics (LQCD) calculations of the
energy spectra of hadrons and nuclei, matrix elements of electroweak and beyond-Standard-Model
currents, and other observables. For asymptotically large Euclidean time separations C, correlation
functions involving arbitrary “source” and “sink” operators approach proportionality to 4−C�0 with
excited-state effects suppressed by $ (4−C X), where X ≡ �1 − �0 is the energy gap between the
ground state and the first excited state. Although large Euclidean time separations can therefore
be used to suppress excited-state effects in principle, LQCD calculations of multi-nucleon systems
are particularly computationally challenging because of an exponential signal-to-noise problem that
becomes more severe for larger C, lighter quark masses, and larger baryon-number systems [1–
5]. Energy gaps between the ground state and excited states are small for nuclear systems in
large volumes, because unbound finite volume (FV) states have energies that approach threshold
like powers of 1/! for large spatial extents ! [6]. The combination of these effects has made
achieving LQCD calculations with C � X−1 unfeasible with current algorithms.1 Understanding
the systematic uncertainties associated with determinations of FV energy spectra determined using
correlation functions with C . X−1 is crucial for providing LQCD calculations of nuclear systems
with fully quantified uncertainties.

Variational methods, in which solutions to generalized eigenvalue problems (GEVP) are used to
obtain orthogonal sets of approximate energy eigenstates, provide determinations of energy spectra
from correlation functions that are guaranteed to provide upper bounds on the true energy spectra
for arbitrary C [15–17]. If a set of interpolating operators that significantly overlaps with all energy
eigenstates below a threshold excitation energy Δ can be constructed, then variational methods can
suppress excited-state effects on ground-state energy determinations from$ (4−C X) to$ (4−CΔ) [17].
However, since the structure of QCD energy eigenstates is not known a priori, it is non-trivial
to determine whether a given interpolating operator set has sufficient overlap with all low-energy
states below a given Δ and thereby quantitatively estimate the excited-state contamination present
in ground-state energy determinations.

The first variational LQCD studies investigated the baryon-number � = 0 and � = 1 sectors
using single-hadron glueball, meson, and baryon interpolating operators [16, 18, 19]. Construction
of multi-hadron interpolating operators is more computationally challenging and was enabled more
recently through the development of efficient algorithms for calculating approximate all-to-all
quark propagators, namely the Laplacian Heaviside or “distillation” method [20] and the stochastic
LaplacianHeaviside [21]method. It was observed for both � = 0 [22, 23] and � = 1 [24, 25] systems
with energies close to resonances or particle production thresholds that interpolating-operator sets
including only single-hadron or multi-hadron operators can lead to inconsistent determinations
of energy spectra with “missing energy levels” when compared to results obtained using larger
interpolating-operator sets.

1An alternative approach based on determining nuclear potentials from Bethe-Salpeter wavefunctions of multi-baryon
systems [7, 8] is argued to avoid the need to achieve C � X−1 to remove contamination from “elastic” excited states [9];
however, short-distance features of the resulting potentials depend on the choice of sink interpolating operator [10] and
the systematic uncertainties in this approach cannot be quantitatively estimated [10–14].
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Early calculations of the energy spectra of � ≥ 2 systems [26–33] and nuclear matrix elements
reviewed in Ref. [5] employed asymmetric correlation functions involving single-hadron sources
and multi-hadron sinks that can be calculated using efficient contraction algorithms [34, 35] but
do not provide variational upper bounds on energy levels. The first variational study of � = 2
systems was reported by Francis et al. in Ref. [36] and performed calculations in several boosted
frames of 2 × 2 positive-definite, Hermitian correlation-function matrices involving single-hadron
interpolating operators as well as symmetric multi-hadron correlation functions computed using the
stochastic Laplacian Heaviside method. Variational studies have also been performed by Hörz et al.
in Ref. [37] and Green et al. in Ref. [38] in which 2 or 3 multi-hadron interpolating operators were
used to build positive-definite Hermitian correlation-function matrices in several boosted frames.
The results of these variational studies are in tension with results from asymmetric correlation
functions, although different calculations involve different discretizations and quark masses, and it
was suggested in Ref. [38] that lattice spacing artifacts may contribute to the discrepancies.

This work presents a variational study of � = 2 systems in which sparsening methods [39, 40]
and highly optimized codes using the Tiramisu [41] compiler framework are used to enable
efficient calculations of positive-definite Hermitian correlation-function matrices including both
single- and multi-hadron interpolating operators with dimensionalities as large as 16 × 16 in the
isospin � = 1 “dineutron” channel and 42 × 42 in the � = 0 “deuteron” channel. The asymmetric
correlation functions studied in previous works appear as particular off-diagonal entires of these
correlation-function matrices and a subset of the gauge-field ensemble used in Refs. [28, 31, 33] is
used here, enabling direct comparisons of results obtained using asymmetric correlation functions
and variational methods on the same gauge-field ensemble. The methods and results of this study
are summarized below and detailed in Ref. [42].

2. Interpolating operators

2.1 Nucleon operators

Standard proton interpolating operators with � = 1 and � = 1/2 that transform in the Γ� = �+1
irrep of the double-cover of the cubic group can be expressed in the Dirac basis (see Ref. [43]) as

?f6 (G) = Y012
1
√

2

[
D0Z 6 (G) (�W5%+)Z b 31b6 (G) − 30Z 6 (G) (�W5%+)Z bD1b6 (G)

]
× [%+ (1 − (−1)f8W1W2)]fZ D2Z 6 (G),

(1)

where f ∈ {0, 1} labels the row of �+1 corresponding to the proton spin, @0
Z 6
(G) denotes a quark

field of flavor @ ∈ {D, 3} with (* (3) color indices 0, 1, 2, Dirac spinor indices Z, b, and labels 6
specifying the gauge-invariant Gaussian smearing [44],� = W2W4, W5 = W1W2W3W4, and %+ ≡

(
1+W4

2

)
is a positive-parity projector. Neutron operators =f6 (G) are defined by Eq. (1) with D ↔ 3, and the
isodoublet nucleon operator is #f6 ≡ (?f6 (G), =f6 (G))) .

Projection to a definite center-of-massmomentum ®%c is accomplished bymultiplying #f6 (®G, C)
by 48 ®%c · ®G and summing over the set of spatial lattice sites Λ. The propagator sparsening algorithm
introduced in Ref. [39] significantly reduces the computational cost of this summation and more
costly summations arising for multi-hadron interpolating operators. Sparsened plane-wave spatial
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wavefunctions are defined to only have support on a cubic sublattice ΛS ⊂ Λ defined as

ΛS = {(G1, G2, G3) | 0 ≤ G: < !, G: ≡ 0 (mod S)}, (2)

where lattice units are used and S ∈ Z is the ratio of the number of full and sparse lattice sites in
each spatial dimension. Momentum-projected nucleon operators are defined as

#fc6 (C) =
∑
®G∈ΛS

k
[# ]
c (®G)#f6 (®G, C), (3)

where k [# ]c (®G) ≡ 48
®%c
���
ΛS

is the spatial wavefunction with support restricted to the sparse lattice.
Sparsening with S > 1 leads to incomplete Fourier projection in which operators overlap with
momenta whose components differ from ®%c by multiples of 2c

S . Sparsening therefore leads to the
appearance of additional excited-state contamination in correlation functions, but these effects can
be mitigated by taking C � 2c

S , which, assuming S � !, is easier to achieve in practice than
suppression of excited-state effects in multi-hadron correlation functions.

2.2 Hexaquark operators

Local six-quark operators, or “hexaquark operators,” can be constructed from products of two
nucleon operators with Gaussian smeared quark fields centered about the same lattice site,

�dc6 (C) =
∑
®G∈ΛS

k
[� ]
c (®G)

∑
f,f′

E
d

ff′
1
√

2

[
?f6 (®G, C)=f′6 (®G, C)

+(−1)1−Xd0=f6 (®G, C)?f′6 (®G, C)
]
,

(4)

where k [� ]c (®G) ≡ 48 ®%c
���
ΛS

, d ∈ {0, . . . , 3} labels the row of �+1 ⊗ �
+
1 = �

+
1 ⊕ )

+
1 , and projection to

spin-singlet (d = 0) and spin-triplet (d ∈ {1, 2, 3}) operators is achieved using

E0
ff′ =

1
√

2
(Xf0Xf′1 − Xf1Xf′0), E1

ff′ = Xf0Xf′0,

E2
ff′ =

1
√

2
(Xf0Xf′1 + Xf1Xf′0), E3

ff′ = Xf1Xf′1.

(5)

Hexaquark correlation functions are efficiently calculated by using quark-exchange symmetry to
reduce the number of terms in a sparse tensor representation of the operators as in Ref. [35].

2.3 Dibaryon operators

Six-quark operators can also be constructed from products of momentum projected baryon
operators. These “dibaryon operators” are defined analogously to Eq. (4) as

�dm6 (C) =
∑

®G1, ®G2∈ΛS

k
[� ]
m (®G1, ®G2)

∑
f,f′

E
d

ff′
1
√

2

[
?f6 (®G1, C)=f′6 (®G2, C)

+(−1)1−Xd0=f6 (®G1, C)?f′6 (®G2, C)
]
,

(6)

which include bilocal spatial wavefunctions labeled by m that are defined by

k
[� ]
m (®G1, ®G2) =

1
√

2

[
4
8

( ®%m
2 +®:m

)
· ®G1
4
8

( ®%m
2 −®:m

)
· ®G2 + 48

( ®%m
2 +®:m

)
· ®G2
4
8

( ®%m
2 −®:m

)
· ®G1

]
. (7)
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To project dibaryon operators into cubic irreps, it is convenient to first form linear combinations
of dibaryon operators within the same relative momentum “shell” s(m) ≡ ®:m · ®:m that lead to spatial
wavefunctions that transform in a particular irrep Γℓ (analogous to infinite-volume orbital angular
momentum). The linear combinations required for s ≤ 6 are presented in Refs. [42, 45]. Dibaryon
operators with definite Γ� , the FV analog of total angular momentum, can then be constructed
using Clebsch-Gordon coefficients for Γ� = Γℓ ⊗ Γ( , where Γ( is the irrep associated with the two-
nucleon spin as for hexaquark operators above, which are presented in Ref. [43]. Sparsening leads
to excited-state contamination from systems with center-of-mass momentum equal to ®:m ±

(
2c
S

)
®48

for 8 ∈ {1, 2, 3}. These effects are less suppressed than in the single-nucleon case, but they are still
expected to be negligible compared to other excited-state effects for S � ! as detailed in Ref. [42].

It is computationally efficient to first calculate correlation-function matrices involving dibaryon
operators with plane-wave spatial wavefunctions as in Eq. (6) and subsequently perform a change-
of-basis that projects the source and sink operators to definite Γ� . This is because the wavefunctions
in Eq. (7) factorize into (a sum of two) products of independent wavefunctions for each baryon, and
correlation functions can therefore be calculated by first constructing “baryon blocks” in which the
sums over the spatial locations of each baryon are performed independently. Expressing correlation
functions as a product of the resulting sums instead of a sum of products reduces the computational
cost of constructing dibaryon correlation functions from$ (!12

S ) to$ (!
9
S) and gives a factor of 105

cost reduction in the numerical study described below.

2.4 Quasi-local operators

In low-energy effective thoeries and phenomenological nuclear models with nucleon degrees
of freedom, the deuteron is described as a loosely bound two-nucleon system with a spatial wave-
function that decays exponentially for large separations of the nucleons. One may worry that both
local hexaquark operators and dibaryon operators whose wavefunctions are not suppressed for large
nucleon separations might have small overlap with such a loosely bound state. “Quasi-local” inter-
polating operators that more closely resemble FV EFT expectations for the deuteron wavefunction
can be defined by

&dq6 (C) =
∑

®G1, ®G2∈ΛS

k
[&]
q (®G1, ®G2, ®')

∑
f,f′

E
d

ff′
1
√

2

[
?f6 (®G1, C)=f′6 (®G2, C)

+(−1)1−Xd0=f6 (®G1, C)?f′6 (®G2, C)
]
,

(8)

with wavefunctions with an exponential localization scale labeled by q

k
[&]
q (®G1, ®G2, ®') =

1
!3
S

∑
g∈TS

4−^q |g ( ®G1)− ®' |4−^q |g ( ®G2)− ®' |, (9)

where TS is the set of translations by multiples of the sparse lattice spacing and ®' is an arbi-
trary parameter specifying the center of the two-nucleon system before translation averaging. By
performing the sum over translations only at the sink, correlation functions involving quasi-local
operators can be constructed using wavefunctions that factorize into a product of independent spatial
wavefunctions for each nucleon at the source and can therefore be efficiently calculated using the
same baryon block algorithm that is applied to construct dibaryon correlation functions.
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3. Variational methods

Given a set S of interpolating operators generically denoted by j, j′, an equal-sized set of
approximately orthogonal interpolating operators that dominantly overlap with a single energy
eigenstate can be obtained by solving the GEVP [16, 17],∑

j′
�
(�,� ,Γ� )
jj′ (C)E (�,� ,Γ� ,S)nj′ (C, C0) = _ (�,� ,Γ� ,S)n (C, C0)

∑
j′
�
(�,� ,Γ� )
jj′ (C0)E (�,� ,Γ� ,S)nj′ (C, C0), (10)

where (�, �, Γ� ) denotes the baryon number, isospin, and cubic irrep of each state, _ (�,� ,Γ� ,S)n (C, C0)
are the eigenvalues, E (�,� ,Γ� ,S)nj′ (C, C0) are the eigenvectors, and C0 is a reference time that can be
for example a fixed C-independent value or a fixed fraction of C. Correlation functions for these
approximate energy eigenstates can then be constructed as

�̂
(�,� ,Γ� ,S)
n (C) =

∑
jj′

E
(�,� ,Γ� ,S)
nj (Cref , C0)∗� (�,� ,Γ� )jj′ (C)E (�,� ,Γ� ,S)nj′ (Cref , C0), (11)

where Cref is a reference time. Taking C0 and Cref to be fixed parameters independent of C guarantees
that �̂ (�,� ,Γ� ,S)n (C) has a spectral representation with positive-definite contributions from each state,

�̂
(�,� ,Γ� ,S)
n (C) =

∑
m

�����∑
j

E
(�,� ,Γ� ,S)
nj (Cref , C0)∗/ (�,� ,Γ� )mj

�����2 4−C� (�,� ,Γ� )m , (12)

which guarantees that effective energies � (�,� ,Γ� ,S)n (C) = ln
(
�̂
(�,� ,Γ� ,S)
n (C)

�̂
(�,� ,Γ� ,S)
n (C+1)

)
approach the true

energies � (�,� ,Γ� )n from above with no possibility of “false plateaus” arising from cancellations
between different excited states. Fits of �̂ (�,� ,Γ� ,S)n (C) to sums of exponentials can be used to provide
energy-level determinations � (�,� ,Γ� ,S)n . FV energy shifts that can be used to constrain baryon-
baryon scattering amplitudes can then be determined from linear combinations Δ� (2,� ,Γ� ,S)n =

�
(2,� ,Γ� ,S)
n − 2� (1,

1
2 ,�

+
1 ,S
′)

0 . Linear combinations of effective energies are defined analogously. The
relative overlaps of each interpolating operator onto each energy eigenstate, denoted Z (�,� ,Γ� ,S)nj ,
are obtained using � (�,� ,Γ� ,S)n , �̂ (�,� ,Γ� ,S)n (Cref), and E (�,� ,Γ� ,S)nj (Cref , C0) as in Ref. [46].

3.1 Missing energy levels

For C → ∞, any interpolating operator set will overlap with an equal-sized set of the lowest
energy eigenstates and excited-state effects are exponentially suppressed by the energy gap to
the lowest-energy state outside the space spanned by the interpolating operator set. For finite C,
variational methods are guaranteed to provide upper bounds on the true energy spectrum but will
not provide accurate determinations of energy levels for states with small energy gaps (compared to
1/C) that have sufficiently small overlap with all interpolating operators considered. For example,
consider a pair of interpolating operators � and � and a three-state system with true energy levels

�
(��)
0 = [ − Δ, �

(��)
1 = [, �

(��)
2 = [ + X, (13)

and normalized overlap factors for operators � and � onto these states

Z� = (n,
√

1 − n2, 0), Z� = (n, 0,
√

1 − n2), (14)

6



P
o
S
(
L
A
T
T
I
C
E
2
0
2
1
)
4
1
9

Fifty ways to build a deuteron Michael L. Wagman

with n � 1 a real parameter. The eigenvalues obtained by solving the GEVP for the 2 × 2
correlation-function matrix involving � and � are given to $ (n3) accuracy by

_
(��)
0 = 4−(C−C0)[

[
1 + n2

(
4CΔ − 4C0Δ

)
+ O(n4)

]
,

_
(��)
1 = 4−(C−C0) ([+X)

[
1 + n2

(
4C (Δ+X) − 4C0 (Δ+X)

)
+ O(n4)

]
.

(15)

The GEVP eigenvalues will therefore not recover the true ground-state energy unless C is large
enough that 4CΔ compensates for the $ (n2) overlap-factor suppression. An asymmetric correlation
function involving � and � operators, however, will overlap perfectly with the true ground state
with zero excited-state contamination. This example can be trivially generalized to include more
states and interpolating operators.

4. Numerical study

A variational study including the operators above is performed using #cfg = 167 gauge-field
configurations with # 5 = 3 degenerate quarks with <c = 806 MeV, ! = 32, and 0 = 0.1453(16)
fm [28], corresponding to a subset of the configurations used in Refs. [28, 31, 33]. The tadpole-
improved [47] Lüscher-Weisz gauge-field action [48] and the Wilson quark action including the
Sheikholeslami-Wohlert (clover) improvement term [49] are used with one step of four-dimensional
stout smearing [50] with d = 0.125 applied to the gauge field. Sparsened timeslice-to-all quark
propagators with S = 4, corresponding to !S = 8, are computed using Gaussian smeared sources
and sinks with two different widths denoted below as , for “wide” and ) for “thin.” The Qlua
LQCD software framework [51] is used to perform these calculations. Sparsened timeslice-to-
all propagators are stored and subsequently used to calculate correlation-function matrices using
C++ codes including significant scheduling and memory optimizations facilitated by the polyhedral
compiler Tiramisu [41].

For the nucleon, a 2×2 correlation-functionmatrix including thin- andwide-smeared interpolat-
ing operators is used to construct GEVP correlation functions. A similar fitting strategy is employed
as in Ref. [52]: single- and multi-exponential fits with a variety of minimum C included in fits are
performed, an information criterion is used to determine the optimal number of states to include
in each fit, and a weighted average of acceptable fit results is used to determine � (�,� ,Γ� ,S)n . The
result for the nucleonmass, � (1,

1
2 ,�

+
1 ,S# )

0 = 1.2031(30), is consistent with previous higher-precision
determinations using the same gauge-field ensemble, which obtained "# = 1.20396(83) [33].

For � = 2 systems, correlation-functionmatrices for � ∈ {0, 1} channels include thin- andwide-
smeared hexaquark operators, all linearly independent dibaryon operators with s ≤ 6, and quasi-
local operators with exponential localization scales ^q ∈ {^1, ^2, ^3} = {0.035, 0.070, 0.14}. These
scales are associatedwith binding energies of {0.0010, 0.0041, 0.016} in lattice units, corresponding
to {1.4, 5.5, 22} MeV, which ranges from less than the binding energy of the deuteron in nature
to the average of the more deeply-bound results for negative FV energy shifts for the dineutron and
deuteron channels obtained in Refs. [28, 31, 33] for the same gauge-field ensemble.

Correlation-function matrices including all 22 interpolating operators with � = 1 and Γ� = �+1
are degenerate, that is det[� (2,1,�

+
1)

jj′ (C)] is consistent with zero at 1f for all C, suggesting that this
interpolating-operator set has statistically significant overlap with fewer than 22 LQCD energy

7
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Figure 1: The left panel shows effective FV energy shifts obtained using S(2,1,�
+
1)

0
. Light (dark) shaded

regions are 67% bootstrap confidence intervals for final fit results (the highest weight fits), and dashed lines
are non-interacting energies. These results for fitted FV energy shifts are also shown in the leftmost column
of the right panel and compared to results obtained using interpolating operator sets S̃(2,1,�

+
1)

m
in which the

operators that have largest overlap with a particular energy level are omitted as discussed in the main text.

eigenstates. Within the statistical precision of this work, the largest non-degenerate interpolating-
operator sets are found to include 16 operators. One such set, S(2,1,�

+
1)

0
, includes all hexaquark and

dibaryon operators with s ≤ 6 but no quasi-local operators. The FV energy shifts obtained using this
interpolating operator set are shown in Fig. 1, and in particular Δ� (2,1,�

+
1 ,S0)

0 = −0.0037(18). Other
interpolating operator sets with s ∈ {0, 1} dibaryon operators replaced by quasi-local interpolating
operators give consistent results with larger statistical uncertainties. However, applying the same
fitting procedure to asymmetric correlation functions with hexaquark sources and s = 0 dibaryon
sinks gives a corresponding ground-state FV energy shift of −0.0091(75), while results from
analogous correlation functions using a superset of this gauge-field ensemble in Ref. [28], Ref. [31],
and Ref. [33] give results of −0.0111(21), −0.0127(21), and −0.0137(17), respectively.

Subsets of S(2,1,�
+
1)

0
that in which dibaryon operators with s = m are omitted, denoted S̃(2,1,�

+
1)

m

with 0 ≤ m ≤ 6, and a set in which hexaquark operators are omitted, denoted S̃(2,1,�
+
1)

7
, give energy

level determinations that differ from those obtained using S(2,1,�
+
1)

0
at high statistical significance as

shown in Fig. 1. The energy levels that dominantly overlap with the omitted interpolating operators

8
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0

0.2

0.4

0.6

Figure 2: Results for relative overlap factors Z (2,1,�
+
1 ,S0)

nj for dibaryon operators �s16 and hexaquark
operators �6 with GEVP eigenstates in the dineutron channel.

appear to be missing in results obtained using S̃(2,1,�
+
1)

m
, while the results for other energy levels

are unaffected within statistical uncertainties. Overlap-factor calculations further show that the
interpolating-operators with the largest overlap with each state are approximately orthogonal, see
Fig. 2. S̃(2,1,�

+
1)

0
provides a ground-state energy determination that is consistent with the first-

excited-state energy determined using S(2,1,�
+
1)

0
, demonstrating analogous behavior to the model

discussed in Sec. 3.1. Despite these discrepancies, it is important to note that all results obtained
using variational methods are consistent if interpreted as upper bounds on energy levels.

Results for the deuteron channel are analogous. Correlation-function matrices involving all 48
operators with � = 0 and Γ� = )+1 considered are found to be degenerate. The largest non-degenerate
sets include 42 interpolating operators, for example S(2,0,)

+
1 )

0
, which includes all hexaquark and

dibaryon but no quasi-local interpolating operators. Consistent results are obtained when s ∈ {0, 1}
dibaryon operators are replaced with quasi-local operators, but removing operators from S(2,0,)

+
1 )

0

again leads to missing energy levels and a set of 40 interpolating operators misses the ground state
identified by S(2,0,)

+
1 )

0
. Overlap quality, rather than interpolating operator quantity, is essential to

ensure that energy levels are accurately determined using variational methods.
To robustly determine the two-nucleon energy spectrum, future studies must include a wide

range of interpolating operators that span as much physically motivated Hilbert space as possible.
Although GEVP results can reconstruct hexaquark-dibaryon correlation functions as linear combi-
nations of states that are closer to threshold than the apparent plateau observed in these correlation
functions, it is also possible that these asymmetric correlation functions could reveal an actual state
that has smaller overlap than other states with all interpolating operators considered here. Fur-
ther studies of interpolating-operator dependence are needed to assess the systematic uncertainties
associated with LQCD calculations of multi-baryon systems.

9
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