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In the vicinity of the deconfinement transition the behaviour of the interquark potential can be
precisely predicted using the Effective String Theory (EST). If the transition is continuous we can
combine EST results with a conformal perturbation analysis and reach the degree of precision
needed to detect the corrections beyond the Nambu-Gotō approximation in the EST. We discuss
in detail this issue in the case of the deconfinement transition of the SU(2) gauge theory in (2+ 1)
dimensions (which belongs to the same universality class of the 2d Ising model) by means of an
extensive set of high precision simulations. We show that the Polyakov loops correlator of the
SU(2) model is precisely described by the spin-spin correlator of the 2d Ising model not only
at the critical point, but also down to temperatures of the order of 0.8)2 . Thanks to the exact
integrability of the Ising model we can extend the comparison in the whole range of Polyakov loop
separations, even beyond the conformal perturbation regime. We use these results to quantify the
first EST correction beyond Nambu-Gotō and show that it is compatible with the bounds imposed
by a bootstrap analysis of EST. This correction encodes important physical information and may
shed light on the nature of the flux tube and of its EST description.
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1. Introduction

In the last few years there has been a lot of progress in the description of the confining regime
of Yang-Mills theories using the “Effective String Theory” (EST) approach in which the confining
flux tube joining a quark-antiquark pair is modeled as a thin vibrating string [1–5] . In particular it
has been realized that the EST enjoys the so called “low energy universality” property [6, 7]: due to
the peculiar features of the string action and to the symmetry constraints imposed by the Poincaré
invariance in the target space, the first few terms of its large distance expansion are fixed and coincide
with those obtained terms in the same expansion for the Nambu-Gotō string. This implies that the
EST is much more predictive than other effective theories and in fact its predictions have been be
successfully compared in the past few years with many results on the interquark potential from
Monte Carlo simulations in Lattice Gauge Theories (LGTs). However it is clear that the Nambu-
Gotō action should be considered only as a first order approximation of the actual EST describing
the non-perturbative behaviour of the Yang-Mills theories. Going beyond this approximation is one
of the most interesting open problems in this context. It turns out that the optimal setting to address
this issue is the finite temperature regime of the theory, in the neighbourhood of the deconfinement
transition, but still in the confining phase since in this regime the boundary corrections become
subleading and can be neglected [8].

In this contribution we report the results, that we recently discussed in ref. [9], of a set of
simulations of the SU(2) gauge theory in (2 + 1) dimensions. We studied the Polyakov loop
correlators in the range of temperatures 0.8)2 ≤ ) ≤ )2 (where )2 denotes the deconfinement
temperature) from which we extracted the interquark potential to be compared with the effective
string predictions. Since the deconfinement transition for this model is of the second order, simple
renormalization group arguments (the so called “Svetitsky-Yaffe conjecture” [10]) show that in
the neighbourhood of the deconfinement transition the model is in the same universality class of
the bidimensional Ising model. Thus the Polyakov loop correlators from which we extracted the
interquark potential can be mapped using this correspondence to the spin-spin correlators of the
23 Ising Model which, thanks to the exact integrability of the model, are exactly known. We shall
see that this mapping is impressively confirmed by the simulation and that the knowledge of the
exact behaviour of the correlator will help us to extract with very high precision the temperature
dependence of the interquark potential and, from that, the corrections with respect to the Nambu-
Gotō action which is the main goal of our study.

2. Lattice setup and definitions

We simulated the SU(2) model on a (2+1) dimensional cubic lattice of spacing 0 and sizes
#C in the compactified “time” direction (which plays, as usual, the role of inverse temperature
) = 1/#C ) and #B in the two other (“spatial”) directions using the standard Wilson action

(W = − V
2

∑
G

∑
0≤`<a≤2

Tr*`a (G) (1)

where *`a (G) is the plaquette operator and V is related, as usual, to the coupling constant of the
model: V = 4/(062). To simplify notations we set the lattice spacing 0 = 1 and neglect it in the
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following. One of the advantages of studying the SU(2) model in (2+1) dimensions is that we can
leverage previous studies to fix the parameters of the model. In particular we can use the scale
setting expression obtained in [11]√

f0(V) =
1.324(12)

V
+ 1.20(11)

V2 + O(V−3) , (2)

where f0 denotes the zero temperature string tension. Moreover some of the simulations that we
shall discuss were performed at V = 9.0 for which an independent determination of f0 can be found
in [12] and [13]. A set of high precision simulations at V = 16.0 can be found in [14]. For the
critical temperature we shall use the estimates of [15].

We shall be interested in the following in the Polyakov loops correlator

� (') =
〈∑
®G
% (®G) %

(
®G + ':̂

)〉
, % (®G) = 1

2
Tr

#C∏
C=0

*0 (C, ®G) . (3)

where :̂ denotes one of the two “spatial” directions, the sum is over all spatial coordinates ®G and
the Polyakov loop % (®G) at a spatial coordinate ®G is defined as the trace of the closed Wilson line in
the compactified “time” direction. In a finite temperature setting the interquark potential + (', #C )
can be extracted from the free energy associated to the Polyakov loop correlator:

� (') ≡ e−
1
)
+ (',#C ) = e−#C+ (',#C ) , (4)

In the confining phase we expect, for large values of ', a linearly rising potential+ (', #C ) = f())'
wheref()) denotes the finite temperature string tension. Aswe shall see belowf()) is a decreasing
function of) and vanishes exactly at the deconfinement point. From+ (', #C ) andf()) we can also
define the zero temperature potential + (') as the ) → 0 limit of + (',)) and the zero temperature
string tension f0 as the ) → 0 limit of f()).

3. The “Svetitsky-Yaffe” mapping

It is well know that a powerful way to study the behaviour of a Yang-Mills theories in the
neighbourhood of the deconfinement transition consists in building an effective action for the
Polyakov loops, by integrating out the spacelike links of the model. Starting from a (3 + 1)
dimensional LGT we end up in this way with an effective action for the Polyakov loops which will
be a 3 dimensional spin model, having a global symmetry with respect to the center of the original
gauge group. If the deconfinement transition is continuous, in the vicinity of the critical point the
fine details of the effective action can be neglected, and it can be shown [10] that it belongs to the
same universality class of the simplest spin model, with only nearest neighbour interactions, sharing
the same symmetry breaking pattern. This means, in our case, that the deconfinement transition of
the SU(2) LGT in (2 + 1) dimensions, which is continuous, belongs to the same universality class
of the symmetry breaking phase transition of the two-dimensional (2d) Ising model. In particular
the Polyakov loop correlator in the confining phase is mapped to the spin-spin correlator of the 2d
Ising model in the symmetric, high-temperature phase of the model, for which an exact expression
is known [16] and can be expanded in the short distance (' � b) and in the large distance (' � b)
limits (where b denotes the correlation length) as follows:
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• ' � b

〈f(0)f(')〉 = :B

'
1
4

[
1 + C

2
ln

(
4W� C

8

)
+ 1

16
C2 + 1

32
C3 ln

(
4W� C

8

)
+$ (C4 ln2 C)

]
, (5)

where C = '
b
, W� denotes the Euler W constant while :B is a non-universal constant, which

can be evaluated exactly in the case of the 2d Ising model on a square lattice [16].

• ' � b

〈f(0)f(')〉 = :; 0(C), (6)

where, again, :; is a non-universal constant (related in a non-trivial way to :B) and  0 is the
modified Bessel function of order zero, whose large distance expansion is  0(C) ∼

√
c
2C 4
−C .

4. Effective String Theory predictions

In a finite temperature setting it is possible to show, with very mild assumptions [6], that
the EST description of the confining flux tube implies the following form for the Polyakov Loop
correlator: 〈

%(0)%†(')
〉
=

∑
=

|E= (#C ) |22'
(
�=

2c'

) �−1
2

 �−3
2
(�=') (7)

where � denotes the number of spacetime dimensions (in our case � = 3), �= are the energy levels
of the string and E= (#C ) their amplitudes, which in general depend on the inverse temperature #C .

In the particular case of the Nambu-Gotō EST it is possible to give an explicit expression for
the energy levels �= which are:

�= = f0#C

√
1 + 8c

f0#
2
C

[
− 1

24
(� − 2) + =

]
. (8)

For the � = 3 case that we are interested in, the lowest state is

�0 = f0#C

√
1 − c

3f0#
2
C

≡ f())#C , (9)

where we introduced the Nambu-Gotō prediction for the finite temperature string tension f()). As
we have seen in the previous section �0 is the inverse of the correlation length, thus we see from the
above expression that the Nambu-Gotō EST predicts a critical temperature )2,#� =

√
3f0

c (�−2) and
a critical index a = 1/2. We see from the Svetitsky-Yaffe mapping (which for our model implies
the 2d Ising value a = 1) that the EST prediction cannot be correct. In addition, also the EST
prediction for the critical temperature is wrong (albeit close to the correct one). These observations
suggest the need to go beyond the Nambu-Gotō approximation. In the large-' limit the Polyakov
loop correlator is dominated by the lowest state �0 and the corrections that we are studying appear
as deviations in the expansion of �0 in powers of 1/#C , with respect to the Nambu-Gotō result.
It can be shown that, due to the so called “low-energy universality”, the first non-universal term
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beyond the Nambu-Gotō action can appear, in the high-temperature regime which we are studying
here, only at order 1/#7

C . Remarkably enough, also this correction is not completely free. Using
the notations of refs. [17, 18] this additional term can be written as

− 32c6

225
W3

f3#7
C

, (10)

where W3 is a new parameter which, together with f0, defines the EST. By using a bootstrap analysis
it is possible to show that W3 is constrained to be W3 > − 1

768 .

5. Simulation results

We performed two sets of simulations. In the first one, which was mainly devoted to a test
of the Svetitsky-Yaffe mapping, we fixed a few values of #C , namely #C = 6, 7, 8, 9 and varied the
temperature by changing V in the range 0.8 < )/)2 < 1. In the second one, which was devoted to
a high-precision study of the correction to the Nambu-Gotō action, we chose the opposite strategy
and fixed three values of V and varied the temperature by changing #C . Further details about the
simulations can be found in ref. [9].

The results of our first set of simulations show that the Svetitsky-Yaffe mapping is almost exact
in the range of temperature that we tested and that there is an impressive agreement between the
Polyakov loop correlators and the Ising predictions of eqs. (5) and (6). This agreement is well
visible in fig. 1, where we plotted the fit of � (') for one particular choice of V and #C with the
Ising predictions of eqs. (5) and (6) (modified to account for the periodic boundary conditions). We
found a similar agreement for all the values of V and #C that we tested.

In the second set of simulations we studied the behaviour of the ground state �0 as a function
of the temperature, as the deconfinement transition is approached from below, at a fixed value of V
and varying the temperature by changing the value of #C . We studied the three values of V and the
range of values of #C shown in tab. 1. For each of these simulations we extracted the value of �0
using the large-distance fit of eq. (6). We report in this proceeding a preliminary analysis of these
data. Further details and a larger set of simulations can be found in [9].

The Nambu-Gotō expectation for �0 is given by eq. (9), which can be rewritten in terms of the
critical temperature as follows:

�0 = #Cf(#C ) = #Cf0

√
1 − c

3#2
C f0

= #Cf0

√
1 − )2

)2
2,#�

. (11)

It is clear that this equation cannot agree with the data since it predicts a mean-field-like critical
index a = 1/2 for the correlation length b = 1/�0, while the Svetitsky-Yaffe mapping predicts
a = 1. The latter type of scaling could be realized in several ways. The simplest possibility is to
assume a linear behaviour for �0,

�0 ∼ 1 −
#C ,2

#C
. (12)

On the other hand, the low energy universality would suggest instead an expression (using the
parametrization of refs. [17, 18]) of the type:

�0(#C ) = Taylor4(�0) +
:4

(f0)3#7
C

(13)
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Figure 1: Fit of the data at #C = 9, V = 12.15266, )/)2 = 0.86 combining both the short distance
approximation (5) and the large-distance one (6) for the spin-spin Ising correlator, taking into account the
periodic boundary conditions.

with

Taylor4(�0) ≡ f0#C −
c

6#C
− c2

72(f0)#3
C

− c3

432(f0)2#5
C

− 5c4

10368(f0)3#7
C

, (14)

where we are truncating the Taylor expansion of eq. (11) to the 1/#7
C order and we assume that

all higher orders are negligible, i.e. that terms arising from higher order terms of eq. (11) and
subleading corrections beyond Nambu-Gotō, which are not known yet, are randomly distributed
and, on average, tend to cancel against each other.

Following the above observations we first tried to fit the data with a pure Nambu-Gotō ansatz
(a = 1/2) and the pure linear ansatz (a = 1) of eq. (12), but neither choice provided a good fit
to the data. It is easy to see that the Nambu-Gotō ansatz fits well the data for larger values of #C
(lower temperatures), but as the deconfinement transition is approached, it misses the approach to
the critical point. Similarly, the naive linear fit of eq. (12) agrees with the data near the critical point,
as expected from the Svetitsky-Yaffe correspondence, but this agreement holds only for the first
few values of #C . For larger values the naive linear function is not compatible with our simulation
results. On the contrary the low energy universality ansatz of eq. (13) turned out to fit the data
remarkably well in the whole range of values of #C and for the three values of V: the results are
reported in tab. 1.

It is interesting to note that the quality of the fits improves as we approach the continuum limit.
Moreover a highly non-trivial consistency check of the procedure is that the best fit values for f0
agree in all three cases with the known ones. Another non-trivial check of our analysis is that
the three values of :4 that we found should be compatible with each other, by virtue of the 1/f3

0
normalization of eq. (13). Tab. 1 confirms that this is indeed the case and that the three values

6
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V #C ,min #C ,max :4 f0 j2
red literature

9 6 12 0.040(8) 0.02603(19) 1.60 0.02583(3)
12.15266 8 14 0.054(5) 0.01366(5) 0.89 0.01371(29)
13.42445 9 15 0.053(8) 0.01104(5) 1.33 0.01108(23)

Table 1: Results of the fit performed with eq. (13). In the last column we report the values of f0 quoted in
ref. [12] for V = 9 and in ref. [11] for the other two values of V.

almost agree within the errors.
The values of :4 quoted in tab.1 should be considered only as preliminary estimates, since,

due to the large values of the correlation length, larger values #B (the lattice size in the spacelike
directions) should be tested to be sure that finite size effects are under control. While we are unable
for the moment to give a precise estimate of the error on :4 we quote, as a preliminary, qualitative,
estimate for :4, the value :4 ∼ 0.05 from which we can extract, using eq. (10),

W3 = − 225
32c6 :4 ∼ −0.0004 (15)

which is well inside the bound W3 ≥ − 1
768 ∼ −0.0013 obtained in ref. [17, 18].

It is reassuring the fact that a similar analysis performed on the data of [14] leads to values
(depending on the order at which the Taylor expansion is truncated) in the range :4 ∈ [0.06, 0.08],
which are very close to our preliminary estimate.

The fact that W3 is negative is rather non-trivial: in particular, as shown in ref. [17], it does not
allow to prove the so called “Axionic String Ansatz” [19, 20], for the EST describing this gauge
theory.

It is interesting to compare this value, with the one obtained in ref. [20] for the SU(6) theory in
(2+1) dimensions using the data from ref. [21], which is of similar magnitude but opposite in sign.
This shows explicitly that at this level of resolution the EST is not universal anymore but encodes,
as expected, the specific properties of the underlying Yang-Mills theory.

Finally, it is important to stress that our results are not limited to the SU(2)/Ising mapping and
to the fact that the Ising model is exactly integrable. By using the tools of conformal perturbation
theory [22], the spin-spin correlator can be obtained in principle for any spin model characterized
by a second order phase transition (not only in two dimensions but also for three-dimensional
universality classes, see for instance refs. [23, 24]) and thus the Svetitsky-Yaffe mapping can be
used also for spin models that are not exactly integrable, like for instance the mapping between the
(3+1) dimensional SU(2) LGT and the three dimensional Ising model discussed in [25].
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