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We determine non-perturbatively the renormalization constant of the flavour singlet local vector
current with O(0)-improvedWilson fermions. The renormalization constant is fixed by comparing
the expectation values (one-point function) of the local vector current and of the conserved one
in thermal QCD in a moving reference frame with a non-zero imaginary chemical potential and
in the chiral limit. We implement the method in QCD with 3 flavours discretized by the standard
Wilson action for gluons and the non-perturbatively O(0)-improvedWilson fermions. By carrying
out extensive numerical simulations, the renormalization constant is determined with a permille
precision for values of the bare coupling constant in the range 0.52 ≤ 62

0 ≤ 1.13.
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1. Introduction

When studying QCD on the lattice one usually faces the problem of computing renormalization
constants in order to extract physically relevant information from the expectation values of a lattice
operator $. Moreover, when $ is renormalized, it may mix with other operators $: that have the
same symmetry transformation rules as $ and have the same canonical dimension or smaller

$' = /$$ +
∑
:

/:$: with dim($:) ≤ dim($) (1)

where $' is the renormalized operator, /$ is the renormalization constant of the bare lattice
operator $ and /: are the renormalization constants that characterize its mixing with the other
bare lattice operators $: . Various renormalization schemes have been proposed and used like the
RI-MOM scheme [1], the Schrödinger Functional scheme [2] and the Wilson flow scheme [3].
Another scheme that has been recently proposed and that has turned out to be a very convenient
choice in several cases, is based on considering the quantum theory at finite temperature and in
setting shifted boundary conditions [4, 5] along the temporal direction.

This framework has been used for the first time for the non-perturbative calculation of the
renormalization constants of the energy-momentum tensor in (* (3) Yang-Mills theory [6]. The
generalization to QCD [7] has been possible by introducing a twist phase for fermions at the
boundaries in addition to the shift. Before addressing the challenging numerical problem of
renormalizing theQCDenergy-momentum tensor, we have considered the simpler task of computing
the renormalization constant of the flavour singlet local vector current: a quantity that has never
been calculated before.

The calculation of the renormalization constants can be a demanding numerical problem since
one often has to measure correlation functions of two or more operators at a physical distance. The
computation is even more challenging for singlet operators due to contributions coming from the
disconnected contraction ofDirac indices, which are characterized by the large statistical fluctuations
of the vacuum. A unique advantage of introducing non-trivial boundary conditions is that one needs
to measure one-point functions, attaining a higher accuracy at a cheaper numerical cost. For the
moment, the scheme of shifted boundary conditions has been used to renormalize lattice operators
that are related to symmetries of the theory and the application to other operators deserve further
investigations.

In this paper we present the results of the numerical simulations that we have carried out with
shifted boundary conditions to compute the renormalization constant of the flavour singlet local
vector current. Although we do not discuss the issue here, our approach can be used in a very
similar way also for the non-singlet case. The renormalization of the local vector current on the
lattice has been a topic of interest for quite some time [8, 9] until recent investigations [10]. In
particular, the flavour non-singlet vector current is an important observable for its relevance in the
calculation of the Hadronic Vacuum Polarization contribution to the anomalous magnetic moment
of the muon [11].
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2. Thermal Lattice QCD in a moving frame

The study of QCD at finite temperature is usually performed to investigate thermodynamical
features of the theory like, for instance, the pressure, the entropy density, the energy density as
well as screening masses, trasport coefficients or other physically interesting quantities. Instead,
in this paper we consider thermal QCD as a numerically efficient framework for computing the
renormalization constant of the vector current on the lattice: that quantity is related to the specific
definitions of the operator and of the action in the lattice regularization and not to physics.

We study QCD with 3 flavours of massless quarks on the lattice and we consider the Wilson
plaquette action for the gauge sector and the O(0)-improved clover definition for Wilson fermions.
We formulate the theory in a moving reference frame [4, 5] that corresponds to introducing a spatial
shift / for the fields when setting the boundary conditions in the temporal direction. For conventions
and notations as well as for the detailed definition of the action, we refer to the Appendices A and
C of reference [7]. The gauge fields and the quark and the anti-quark fields satisfy the following
boundary conditions

*` (G ′0, x) = *` (G0, x
′) ; k(G ′0, x) = −4

8 \0 k(G0, x
′) ; k(G ′0, x) = −4

−8 \0 k(G0, x
′) (2)

respectively, where G ′0 = G0 + !0 and x′ = x− !0/; all fields are periodic in the spatial directions. In
the above equationswehave considered amore general form for shifted boundary conditions inwhich
the fermionic fields pick up also a non trivial phase \0 in addition to the usual antiperiodicity [7].
By a change of variables that phase can be rewritten as an imaginary chemical potential [12] and it
is interesting to note that there is an effective 2c/3 periodicity of the free energy due to the mixing
of \0 with the //3 center symmetry of the (* (3) pure gauge sector [13].

The non-anomalous Abelian part of chiral symmetry is not affected by the lattice regularization
and it is exactly conserved also at finite lattice spacing. As a consequence, there is a flavour singlet
conserved lattice operator that describes it and which is given by

+2
` (G) =

1
2

[
k(G + 0 ˆ̀)*†` (G) (W` + 1)k(G) + k(G)*` (G) (W` − 1)k(G + 0 ˆ̀)

]
. (3)

Since this operator represents a conserved current on the lattice, it has a unit renormalization
constant and it approaches the flavour singlet continuum vector current in the limit of vanishing
lattice spacing 0 → 0. Other definitions of the flavour singlet vector current on the lattice can also
be studied like, for instance, the one that more closely resembles the continuum definition

+ ;
` (G) = k(G)W`k(G). (4)

Although this latter definition requires to compute a renormalization constant /+ of the lattice
operator, it has the appealing numerical features of being ultra-local – i.e. not involving fields on
different lattice points as +2

` (G) does – and of having smaller statistical fluctuations. Moreover,
the possibility of considering a local and a conserved definition of a given operator may be useful
in some cases and it can be numerically convenient to consider both operators when computing
multi-point correlation functions [16]. In the thermodynamic limit, the phase \0 is related to the
temporal component +2

0 of the conserved current by
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〈+2
0 〉 = −8!0

m

m\0
5 (5)

where 5 is the free energy density. The expectation value of the temporal component of the current
vanishes both at zero and finite temperature, however, that is no longer the case when \0 takes non
vanishing values. We can now define the renormalization constant of the local current as

/+ (62
0) = lim

0/!0→0

〈+2
0 〉\0

〈+ ;
0〉\0

(6)

where 62
0 is the bare coupling and the notation 〈·〉\0 means that a non vanishing value of the

fermionic phase has to be considered. In the above definition we have suppressed the dependence
on G thanks to translation invariance of the expectation values. It is interesting to note that the
eq. (6) is a legitimate definition for /+ (62

0) also for usual periodic boundary conditions, namely
when there is no shift. However, we observe that when we consider the shift / = (1, 0, 0), lattice
artifacts turn out to be particularly small.

In figure 1 we show /
(0)
+

, the value of /+ (62
0) at tree-level in perturbation theory, as a function

of \0 and for several values of the lattice temporal extent !0/0

/
(0)
+

(
!0
0

)
=
〈+2 (0)

0 〉\0

〈+ ; (0)
0 〉\0

= 1 +$
((

0

!0

)2
)

(7)

where the label (0) means that the computation is performed at tree-level in perturbation theory.
Thus, when !0/0 goes large, / (0)

+
approaches the asymptotic unit value and the deviations from

1 are tree-level lattice artifacts. The left panel displays the results for usual periodic boundary
conditions – i.e. no shift – while in the right panel we see the data for shifted boundary conditions
with shift / = (1, 0, 0). We observe that lattice artifacts are one order of magnitude smaller in the
latter case: hence, even if it is not necessary, it is numerically very convenient to perform numerical
simulations with shifted boundary conditions. We noticed a similar behaviour also in the (* (3)
Yang-Mills theory where we found small lattice artifacts when measuring the entropy density with
shifted boundary conditions with shift / = (1, 0, 0) [14, 15].

The local and the conserved currents – given by eqs. (3) and (4) respectively – can be improved
in order to reduce the relevance of the lattice artifacts; under renormalization they mix, in the chiral
limit, with a single dimension 4 operator related to the tensor current [17] and we have the following
O(0)-improved definiton of the lattice operators

+̂2,;
` (G) = +2,;

` (G) + 0 22,;+
ma

(
1
2
k(G) [W`, Wa] k(G)

)
+$ (02) (8)

where 2
2,;

+
are numerical coefficients that accomplish the non-perturbative improvement when

properly tuned. Thanks to translation invariance, the expectation value of the second term on the
r.h.s. vanishes and, hence, both the expectation values of the local and the conserved vector currents
are automatically O(0)-improved.

The tree-level calculation / (0)
+
(!0/0) allows to introduce a tree-level improved definiton of the

renormalization constant of the local vector current as follows
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Figure 1: The lattice artifacts of the renormalization constant of the flavour singlet local vector current
at tree-level in perturbation theory as a function of \0. Values for various sizes !0/0 of the lattice in the
temporal direction are shown: the left panel refers to the case of periodic boundary conditions (no shift) and
the right one to shifted boundary conditions with shift / = (1, 0, 0).

/+ (62
0) = lim

0/!0→0

[
〈+2

0 〉
〈+ ;

0〉
+ 1 − /

(0)
+
(!0/0)

]
(9)

where we left unchanged the symbol with respect to the unimproved definition. We have also
completed the calculation of /+ (62

0) at 1-loop order in perturbation theory and we plan to further
improve the definiton of the renormalization constant in a forthcoming paper.

3. The numerical study

In this sectionwe present the study that we have performed for the non-perturbative computation
of the renormalization constant of the flavour singlet local vector current in QCD. The Monte Carlo
simulations have been carried out with 3 flavours of massless O(0)-improved Wilson fermions and
with the Wilson plaquette gauge action. We have considered 7 values of the bare gauge coupling
62

0 = 6/V in the range [0.52, 1.13]: V = 5.3, 5.65, 6.0433, 6.6096, 7.6042, 8.8727 and 11.5. For
each one of those values we have run numerical simulations on lattices with size 963 × !0/0 with
!0/0 = 4, 6, 8, 10; we have chosen the value \0 = c

6 for the fermionic phase and / = (1, 0, 0) for
the shift. The critical value of the hopping parameter has been determined from ref. [18] for the
two smallest and the largest values of V while for the other 4 values we have used the results of [19].
A statistics of 100 trajectories has been collected for !0/0 = 4 and 6 while for !0/0 = 8 and 10 we
have generated 400 and 1000 trajectories, respectively; each trajectory is 2 Molecular Dynamics
Units long. The autocorrelation time is less than 2.

In figure 2 we show the extrapolation to 0/!0 → 0 at fixed value of the bare gauge coupling
of the tree-level improved definition of /+ (62

0) for the 7 considered values of 62
0. Linear fits in

5
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(0/!0)2 provide a very good description of the numerical data and we obtain a final accuracy of
1% or less on the extrapolated values.
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(a/L0)2
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β =8.8727

β =11.5

Figure 2: Extrapolations to 0/!0 → 0 of the tree-level improved renormalization constant /+ (62
0) at the 7

values of the bare gauge coupling considered in this study.

The renormalization constant of the flavour singlet local vector current has been computed
at 2-loop order in perturbation theory [20]. In figure 3 we compare the results of our non-
perturbative calculation with the perturbative formula. The symbols are the data from our Monte
Carlo simulations and the continuous line is the 2-loop perturbative formula: it shows up working
well up to 62

0 ' 0.9 with about a 1% accuracy.

4. Conclusions

In this study we perform the non-perturbative calculation of the renormalization constant
/+ (62

0) of the flavour singlet local vector current of QCD with 3 flavours of massless quarks on
the lattice. We show that by considering a non vanishing fermionic phase \0 – corresponding to an
imaginary chemical potential – the renormalization constant /+ (62

0) can be efficiently computed
by the ratio of the expectation value of one-point functions of the conserved and of the local vector
currents. We have worked in the framework of shifted boundary conditions: although, in this case,
one could also consider usual periodic boundary conditions, shifted ones turn out to be a more
convenient choice since lattice artifacts are much smaller. Our non-perturbative results are well
described by the 2-loop perturbative formula for 62

0 ≤ 0.9: we note that this very good agreement is
quite remarkable, suggesting that both higher perturbative orders and residual discretization errors
are very small.
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Figure 3: Comparison between the non-perturbative calculation of /+ (62
0) (symbols) and the 2-loop

perturbative result (continuous line).

The method we exploited here to compute the renormalization constant of the flavour singlet
local vector current can be applied also to the flavour non-singlet casewith appropriatemodifications.
This study is the first application of the scheme of shifted boundary conditions to renormalize lattice
operators in QCD; work is in progress to compute in this scheme the renormalization constants of
the energy-momentum tensor.
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