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Critical behavior towards the chiral limit Mugdha Sarkar

1. Introduction

Knowledge of the nature of the chiral phase transition is a crucial piece of the puzzle of
understanding the QCD phase diagram. With advances in high performance computing, lattice
simulations with dynamical light quarks having smaller-than-physical masses have become feasible.
This allows us to hunt for the signals of criticality towards the chiral limit, if any. A recent review
of the motivations and the current developments of this field can be found in Ref. [1].

In the schematic 3d QCD phase diagram depicted in
Fig. 1 (taken from Ref. [2]), we are interested in the chiral

limit of the two degenerate light quarks (m,, 4 = m; = 0) TY ...

at vanishing chemical potential, which is accessible to T, _‘.?,.;,-' '~~~~\\
lattice calculations. The chiral phase transition temper- T, _"\ \\
ature 7, (denoted by the red dot in figure) was recently T - \“
determined to be around 132 MeV [3], which is below [ R S :
the crossover temperature 7). at physical quark masses oo ﬂ

[4, 5]. However, the order of the chiral phase transition is «

still not clear beyond doubt. Depending on the restoration

of the anomalously broken U4 (1) symmetry around 7, ; >
one possibility is that the chiral phase transition is a sec- KB

ond order transition belonging to the 3d O(4) universality
class [6], which seems to be preferred from recent studies  Figure 1: Schematic phase diagram for
[3, 7-10] over other possibilities. (2+1)-flavor QCD [2] in the temperature
In this proceedings, we present our investigations of (7)), baryon chemical potential (up) and
the conserved charge fluctuations calculated with smaller- 1ight quark mass (m;) directions.
than-physical light quark masses. The imprint of the crit-
icality on these observables is important from the viewpoint of the heavy-ion collision experiments
[11, 12]. We further report on mixed observables which are derivatives of the free energy density
with respect to the light quark mass and chemical potential. Next, we present a preliminary cal-
culation of the curvature of the chiral phase transition line at non-vanishing chemical potentials.
The curvature in the chiral limit is important for locating the supposed tricritical point at T = Ty,
denoted by the maroon dot at the end of the red second order transition line in Fig. 1. The tricritical
point in turn affects the location of the critical endpoint T¢ep, [13] (denoted by the blue point in Fig.
1), which is being actively searched for in experiments.

2. Lattice setup

The gauge ensembles have been generated with HISQ fermion discretization and tree-level
improved Symanzik gauge action. The ensembles were generated starting from physical light quark
mass m; = my /27 to smaller-than-physical light quark masses m; = m /40, mg /80, my /160, keeping
strange quark mass my fixed at physical values, with corresponding pion masses of 140 MeV, 110
MeV, 80 MeV and 58 MeV. For scale setting, we use the kaon decay constant obtained in calculations
with the HISQ action, i.e., fx = 156.1/ V2 MeV [14]. We present results from measurements done
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at the largest simulated volumes for each mass at fixed time extent N, = 8 with aspect ratios N, /N,
in the range 4 — 7.

3. Critical behavior of thermodynamic quantities

In Wilsonian RG theory, the couplings of the Hamiltonian near a fixed point in the infinite
coupling space can be classified into those that respect the symmetry (which gets broken across the
critical point) and those that break the symmetry explicitly. With respect to the chiral phase transition
in hot and dense (2+1)-flavor QCD, the temperature 7', chemical potentials ux for conserved charges
(X =B,0,5), etc.!, define the symmetry-preserving energy-like scaling field ¢ and the light quark
mass m; defines the symmetry-breaking magnetic-like scaling field h. In the vicinity of the critical
point, the dimensionless scaling fields are defined as

| (T-T, 2 H 1
f=— —C+K§(’“‘—X) Y 1)
to T. T

where tg, hg and K§ are dimensionless non-universal constants and K§ also denotes the leading
order curvature of the chiral phase transition line.
Using the linearized approximation of the scaling fields near the critical point, we may express
the free energy density f as the sum of singular (non-analytical) and regular contributions as [12],
% = Ah®=1BS f1 (2) + regular terms, )
where fr(z) is a universal scaling function of the scaling variable z = ¢/ h'/BS o, B and & are
the critical exponents of the universality class and A is a non-universal constant. With higher
derivatives of f, the singular part becomes dominant and diverges in the chiral limit. The various
scaling functions have been studied precisely for 3d O(2) [15] and O(4) [16] universality classes
and have been successfully used to fit lattice data [7, 17, 18]. This indicates the possibility that
the chiral phase transition belongs to the O(4) universality class. Since we work at finite lattice
spacing with staggered quarks, we use 3d O(2) critical exponents in this study. Given the fact that
the lattices used in this project are large enough [3], we use the infinite volume scaling functions in
our analyses for any thermodynamic observable.

3.1 Fluctuations of conserved charges

We are interested in the behavior of conserved charge fluctuations at vanishing chemical
potential as we move towards the chiral limit. From Eq. 2, the scaling behavior of the cumulants
can be written as

XX ~ aan/T4
0 (ux [T
HX

= —An(2/<§)”h(2“1—")/ﬁ6f;”) (z) + regular terms, 3)
=0

where ff(”) (z) are derivatives of the universal free energy scaling function with respect to (w.r.t) z
and A, are non-universal constants. From Eq. 1, it is easy to show that two derivatives of f w.r.t

IThe strange quark mass mg may as well be considered to be an energy-like coupling as we shall do later.
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Figure 2: Left : The second order cumulant of baryon number fluctuations, )(f , as a function of the
temperature at various quark mass ratios H = m;/m;. Right : The values of )(23 atT = TL{V =8 plotted against
HU-)/Bs — p0.61 (using 3d O(2) critical exponents).
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Figure 3: Left : The 4" order cumulant of electric charge fluctuations, )(4Q, as a function of the temperature
for different H values. Right : The same as left but for the 6" order cumulant, )(6Q. The data for H = 1/160
is still too noisy.

ix yields the same singular part as a single derivative w.r.t T up to a constant. Hence, the (2n)"
order cumulants are actually n' order derivatives of f w.r.t T in terms of scaling behavior. For 3d
O(N) models in general, « is negative and the divergence starts from 6 order onwards. The second
order cumulants behave as the energy density and the fourth order cumulants behave as the specific
heat which should develop a characteristic spike around 7 in the chiral limit [19]. We reported on
this behavior in a previous proceeding [20]. Here we present the updated statistics in Figs 2 and 3.

The singular part of the second order cumulants at 7 = 7, for different H could be estimated
from a scaling fit which is linear in H(!~®/B9 a5 can be seen from Eq. 3 and from the right-hand
plot in Fig. 2. The ratios among the singular parts of different second order cumulants can be used
to estimate the ratio of the curvatures along corresponding ux directions [20].

The features of the 4" and 6™ order fluctuations are governed by the scaling functions f ]Q’(z)
and f ]f.”(z), respectively. These scaling functions for the 3d O(4) universality class can be found
in Ref. [12]. We present updated results for the 4" and 6™ order cumulants of the electric charge
fluctuations in Fig. 3, where the improvement of the former one is vivid and the apparent increase
in the peak height, according to the scaling expectation, can be better realized. Compared to Ref.
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Figure 4: Left: The dimensionless strange mass m derivative of the light quark condensate X;, m;0%;/dmy,
versus temperature for various H values. Right : The same quantity scaled by the factor H!=%)/8% and plotted
against z/z9 = H-'/PO(T - T,.) /T, for different H values.

[20], we have been able to add H = 1/80 data to the )(6Q calculation but it is evident that we still
require more statistics.

3.2 Mixed observables

The mixed derivatives of the free energy density i.e. derivatives w.r.t both energy-like (¢) and
magnetic-like (&) couplings are divergent already from second order onward. We study two classes
of mixed observables, corresponding to m derivatives of the light quark chiral condensate %, i.e.
my0%;/0mg, and uy derivatives of Xy, i.e. C2Z’X =
mass mg does not break the 2-flavor chiral symmetry, we consider it to be a energy-like coupling.

8%%,;/0 (ux /T)?, respectively. Since the strange

The dimensionless light quark chiral condensate is defined in the fx scale as

5 =M O )

_Ea_ml

Since we do not take the continuum limit in this work, we need not worry about the ultraviolet
divergence in %;. In terms of scaling behavior, %; can be expressed as

®)

¥, = h'/9 f5(2) + regular terms,

where fg(z) is a universal scaling function related to fr(z) as fg(z) = —(1 +1/0)fr(z) +
(z/BO) f Ji (z). Upon taking two derivatives w.r.t. ux, we have the following scaling expectation,

CZZ’X = 2K§h(ﬂ_l)/'36f(/; (z) + regular terms, (6)
where the singular term is divergent for both O(2) and O(4) critical exponents. The mixed

observable my0%;/0m, has the same singular behavior up to a constant but with different regular
contributions. It may be noted that CZZ’X is the leading order coefficient in the Taylor expansion of
the light quark chiral condensate X; in chemical potential ux. We refer to [4, 21] for the techniques
used in the computation of ¥; and its Taylor expansion coefficients.

We present our results for my0%;/0mg and CZZZX in the left panel of Fig. 4 and in Fig. 5,
respectively. In the right plot of Fig. 4, we show m;0%;/dmy scaled by H!1=#/83 plotted against
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Figure 5: Top left : The second order Taylor coeflicient, CZE’B, in the expansion of Z; around baryon number

chemical potential up = 0, plotted against temperature at given H values. Top right : The same coefficient
of the expansion in electric charge chemical potential pp. Bottom : The same coefficient for strangeness
chemical potential ug.

z/zo. It can be easily seen from Eq. 6 that the scaled plot represents the scaling function f/,(z) up
to a constant, in the absence of regular contributions. If we are close to the chiral limit, the regular
terms would be negligible in comparison to the divergent singular part and we should observe the
scaled data as a function of z/z¢ to fall on top of each other for different H — 0. However, we
do not observe such a behavior for our current H values in Fig. 4, which indicates that the regular
contributions are not negligible. As discussed in Ref. [7], very similar observables w.r.t scaling
expectation may behave quite differently in the lattice data, due to regular terms. We are currently
investigating the role of various regular terms in our data. It should also be noted that we had
presented results for some mixed observables in the 7 normalization previously [20], as opposed to
fx normalization in this proceeding. The change in normalization produces a qualitative change in
the scaling behavior and we intend to discuss on this in more detail in a future study.

4. Curvature of the chiral phase transition line

From the definition of the reduced temperature ¢ in Eq. 1, one can easily see that the condition
t(T, ux) = 0 maps out the chiral phase transition line in the T — ux plane. Using this condition, we
can write the chiral transition temperature as a function of the chemical potential as

T (ux) = T.(0) (1 - (“7")2) . )
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Figure 6: Left : The light quark chiral condensate X; versus temperature, obtained at different H values. The
data as a function of temperature has been interpolated using rational polynomials. Right : The temperature
derivative, —T0%;/0T, obtained from the fit of X; shown in the left panel, is plotted against the temperature
for various H values.

It is clear from the above that the coefficient K§ determines the leading-order curvature of the chiral
transition line for small ux values.

One can try to find an estimate of K§ in the following way. For any observable O at T = T
and ux = 0, we can rewrite the chemical potential and temperature derivatives, using Eq. 1, as,

3 (ux/T)? o 001 ’
80 1 80
(©)]

67‘( 0 tol,. Ot

C»

Combining Eqgs. 8 and 9, we find an estimate for the chiral curvature at small values of chemical
potential,

2 (0%0/811%)

2T 007

(7,0
K .

(10)

(Tc,0)

At finite values of H, the derivatives of O may consist of regular contributions along with the
X
5
towards the chiral limit to obtain better estimates for K§ from our data at small H values. One

singular part, which add corrections to x5 . We choose O such that the singular parts diverge
such choice is the chiral order parameter. We consider the light quark chiral condensate %; in this
discussion?. The scaling expectation of the ux derivative, CZ,ZIX = 025,/ (ux /T)?, is given in Eq.
6. As discussed in Sec. 3.1, the T derivative of %; should be the same as Eq. 6 except for factors of
K§ and different regular terms.

We already discussed our lattice results for Ci ' at smaller-than-physical light quark masses
in Fig. 5 in the previous section. To calculate the 7" derivative of %;, we first interpolate X; using
rational polynomials, as shown in the left panel of Fig. 6, and then took the T derivative of the
interpolating function to get 0%;/0T which is shown in the right panel of Fig. 6. Finally, we

2We could have chosen instead the subtracted condensate X, but the presence of the strange quark condensate term
X

may alter the singular behavior leading to non-trivial corrections in &5 .
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Figure 7: The ratio of the second order chemical potential derivative 6°%;/ 6/13( and temperature derivative
0% /0T of the light quark condensate ¥; across the temperature range for various ux, X = B, S. The chiral
limit estimates of Ké( get extracted in the yellow band around 7,.. For comparison, we denote the 68%
confidence interval of the continuum extrapolated results of the leading order curvature at physical mass,
determined at 7, for different ux [4], by black bars along the y-axis.

also interpolate the data of the ux derivatives and take the ratio of Figs. 5 and Fig. 6 to obtain
the estimates of the curvature values shown in Fig. 7. The interpolations as well as the ratio
calculation have been done on fake samples generated under Gaussian approximation with mean
and standard deviation being the average and the uncertainty, respectively, of a particular data
point. We read off the chiral curvature K§ from the temperature interval around the chiral phase
transition temperature on lattices with temporal extent N =8, T =T, CN =8 ~ 144 MeV (determined
in Ref. [3]). The continuum extrapolated results for the curvature of the crossover line along various
chemical potentials at physical masses [4] has been indicated by black bars in Fig. 7 (see figure
caption). Our preliminary results suggest that the chiral limit result for the curvature coeflicient
Kf remains almost unchanged from the physical mass curvature which may be argued from the
relatively small change in the nucleon masses towards the chiral limit [22]. Similar calculation
for ug is shown in the right panel of Fig. 7 and the corresponding chiral curvature coefficient Kg
at N = 8 appears to be below the corresponding continuum physical mass value. The curvature
coeflicient of the chiral transition line along various chemical potentials can also be obtained as a
fit parameter from the scaling fit of the ux derivative of the chiral condensate with the ansatz given
in Eq. 6. This has been tried in a previous work using the p4-action of staggered quarks [18] and
we plan to repeat the same analysis with our current HISQ data. This will give a more complete
picture about the mass dependence of the (pseudo-)critical lines towards the chiral limit.

The same ratio in Eq. 10, except for the factor 72 /2T, replaced by Tpe/2, was computed for
thermodynamic observables like the pressure and energy density at physical mass H = 1/27 in Ref.
[23]. The ratio represents the curvature of the line of constant physics (LCP) for the observables
computed at T = T, and ugp = 0. It was found that they agree quite well with the curvature
of the crossover line along up. From Fig. 7, we can also extract the curvature of the LCP of
the chiral order parameter for H = 1/27 at T = TII,\QTZS ~ 161 MeV and that seems to be in well
agreement with previous determination of the curvature of the pseudo-critical line using various
pseudo-critical conditions.
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5. Conclusions and outlook

Our results at finite lattice spacing appear consistent with a chiral phase transition belonging to
the 3d, O(2) universality class (3d, O(4) in the continuum). The scaling behavior of second order
conserved charge fluctuations is similar to that of an energy density which allows us to separate the
singular and regular contributions of these quantities at physical or any given masses. The ratios
of the singular contributions provide an estimate of the ratio of the chiral limit curvatures, and it
seems to indicate that the curvatures along various chemical potential directions depend weakly on
the light quark mass. We expect the strange quark mass is an energy-like coupling w.r.t the 2-flavor
chiral phase transition and the strange quark condensate to behave like an energy density. However,
at our current H values, we need more detailed analyses including the regular contributions to
understand the scaling behavior of the mixed observable, m 0%;/dm; better.

We provided a first preliminary result for the estimators of the curvature of the phase transition
line in the chiral limit with the HISQ action. In agreement with the ratios of the curvatures from
the second order cumulants, we find that the curvature changes only weakly as we move towards
the chiral limit.

Next, we plan to do a scaling analysis with input from the previously known 3d, O(2) scaling
functions to understand the interplay of the singular and regular contributions in the observables. In
addition, the fluctuations at smaller-than-physical masses in the hadronic phase shall be compared
to predictions from the HRG model, which by itself cannot capture the critical behavior. In the
future, we plan to do an extensive study at different lattice spacings and volumes for different masses
to take the chiral, continuum and thermodynamic limits.
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