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We recently presented elastic � = 1/2 �c scattering from lattice QCD at <c = 239 MeV. The
amplitude features a pole corresponding to a mass < ≈ 2200 MeV and a width Γ ≈ 400 MeV.
The results were compared to an earlier study at a higher pion mass and to a similar study in
the charm-strange sector. In this contribution to LATTICE2021 I summarize these results and
compare themwith experiment, based on the values reported by the particle data group. Our result
lies significantly below the experimental �∗0. I also relate our findings to recent studies in chiral
perturbation theory.
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1. Introduction

Open-charm systems are an interesting testing ground for our understanding of low-energy
QCD. The lightest scalar charm-light state �∗0 and its relation to the corresponding charm-strange
state �∗

B0 has been a puzzle since the experimental discovery of the two mesons in 2003. From
the perspective of the quark-model both states are represented by the scalar arising from a charm-
and a light- or strange-quark interacting in a relative %-wave. The mass difference of the two
states is therefore expected to be due, in large part, to the difference of the light and strange quark
masses. However, the current particle data group (PDG) average [1, 2] locates the �∗0 at an energy
compatible with that of the �∗

B0, as shown in fig. 1.1. The large width of the �∗0 that was found
experimentally furthermore casts doubt on the validity of the quark model results for this system.

As a model independent approach, lattice QCD allows for the study of hadron resonances as
they arise purely from QCD dynamics. While the current technical requirement to perform most
calculations at larger-than-physical quark masses may be seen as a limitation, it can also be regarded
as a tool to map out the quark mass dependence of the states between the flavour symmetric point
and the physical mass. In this contribution, I summarize the results from our recent study of � = 1/2
�c scattering [3], which completes a quartet of studies of the scalar charm-light and charm-strange
sector at two different mass points [4, 5]. I also relate our results to recent studies in unitarised
chiral perturbation theory and present an outlook for future investigations.
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Figure 1.1: Average mass values reported by the PDG [1, 2] of the lowest charm-light and charm-strange
states. The bottom horizontal axis shows the total angular momentum and parity �% whereas the top
horizontal axis indicates the magnitude of the sum 9@ of the orbital angular momentum ®! and light-/strange-
quark spin ®B@ of the corresponding quark-model state. The two quark spins are conserved separately in the
heavy-quark limit.
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2. Lattice Calculation

The calculation is performed on an (!/0B)3 × ()/0C ) = 323 × 256 anisotropic lattice with 2+1
dynamical quark flavours, ! and ) denoting the spatial and temporal lattice extents respectively,
and 0B (0C ) the spatial (temporal) lattice spacing. The anisotropy b ≡ 0B/0C ≈ 3.5 and the stable
hadron masses are obtained from a fit of the relativistic dispersion relation

(0C�)2 = (0C<)2 + ®32
(

2c
b !/0B

)2
(1)

to the lattice energies of the respective hadron at different momenta. Here ®3 is a vector of integers
pointing in the momentum direction. We use the b value from the pion fit in this calculation
to convert energies to the rest-frame, but consider the D meson anisotropy in the assessment of
systematic uncertainties. The scale setting is done through a comparison of the calculated Ω
baryon mass on this ensemble with the physical one, such that 0−1

C = <
phys.
Ω
/0C<lat.

Ω
. The ensemble

was generated using a tree-level Symanzik-improved anisotropic action in the gauge sector and a
tree-level, tadpole-improved Sheikholeslami-Wohlert action for the fermions. The light quarks are
heavier-than-physical while the strange quark is tuned to approximate the physical value. Table 1
summarises the most relevant properties of the ensemble.

0B 0−1
C (!/0B)3 × ()/0C ) <c # 5 #cfg

0.11 fm 6.079 GeV 323 × 256 239 MeV 2 + 1 484

Table 1: Ensemble used in the calculation

Correlators are computed using the distillation framework [6]. All relevant graphs are eval-
uated, including disconnected pieces. The spectrum is obtained from a variational analysis of
correlation functions obtained from a basis of interpolating operators, including @@̄-like and meson-
meson-like operators, solving the generalised eigenvalue equation

�8 9 (C)E (n)9 = _n(C, C0)�8 9 (C0)E (n)9 , (2)

where �8 9 (C) is the matrix of correlators. Operators are projected to irreducible representations
(irreps) of the cubic group $ℎ (at rest) and the little group !� ( ®?) at non-zero momentum to
allow for the recovery of angular momentum information from the lattice spectra. To obtain
scattering amplitudes in the infinite volume we utilise the Lüscher quantisation condition [7–9] and
its extensions [10–18], which allows a fit of a parametrised t-matrix to the energy levels calculated
in the finite volume. In our reference fit we parameterise the t-matrix as

(C (ℓ) )−1(B) = 1
(2:)ℓ

 −1(B) 1
(2:)ℓ

+ � (B)

 (B) = 62

<2 − B
+ W .

(3)

� (B) denotes the Chew-Mandelstam phase space subtracted at the energy of the pole parameter, : (B)
is the momenum in the center-of-momentum frame as a function of Mandelstam B and <, 6 and W
are free parameters. To estimate the uncertainty arising from the choice of the specific functional
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form of the C matrix, we fit a range of different parametrisations, among them different  -matrix
forms, effective range and scattering length parametrisations as well as a Breit-Wigner. We also
consider an amplitude based on unitarised chiral perturbation theory [19].

3. Results

We compute spectra for 10 irreps, both at rest and with one, two and three units of momentum.
Figure 3.1 shows a subset of these. We perform an (-wave fit based on 20 energy levels from 5
irreps where ; = 0 is the leading partial wave. There is a small but non-zero %-wave contribution in
the moving-frame irreps, which we consider including a pole term in the  -matrix, accounting for
an extra energy level far below �c threshold appearing in these irreps. Using a single energy level
from the �+ irrep we show that the �-wave phase shift is consistent with zero and we therefore
conclude that higher partial waves can be neglected. The energy levels used in the fit are all below
the thresholdwhere three-body�cc scattering becomes kinematically possible and therefore, at this
mass point, well below other thresholds of inelastic scattering. For the fit of our reference amplitude,
using the  -matrix given by eq. 3 in the ( wave channel, we obtain j2/#dof =

13.49
20−5 = 0.90.

We analytically continue amplitudes to complex values of Mandelstam-B. Above �c threshold
there are two Riemann sheets due to the multi-particle branch cut, which are referred to as physical
and unphysical sheet. Physical scattering occurs above the real axis on the physical sheet. Poles of
the amplitude on the unphysical sheet may be interpreted as resonances and their residue gives the
coupling to the decay channel. While the fits constrain the behaviour on the real axis, there may
be large differences between parametrisations at complex energies. The amplitudes we consider
are analytic, except for poles and the multi-particle branch cut along the real axis. Using the
 -matrix formalism, they obey the constraint of unitarity by construction. We also aim to preserve
causality by rejecting amplitudes that feature nearby poles above threshold on the physical sheet.
The remaining amplitudes consistently feature an ( wave pole approximately 77 ± 64 MeV above
threshold, with an imaginary part between 200 and 600 MeV, indicating a resonance as a universal
feature. For the pole and its residue we obtain the estimate

√
B0/MeV = (2196 ± 64) − 8

2 (425 ± 224)
2/MeV = (1916 ± 776) exp 8c(−0.59 ± 0.41)

from an envelope around the poles of all amplitude variations. We also take into account variations
of the stable hadron masses and the anisotropy within their uncertainties, which are inputs to the
Lüscher determinant condition. The amplitude (pole) resulting from our fits corresponds to the red
curve (data point) in the left (right) panel of fig. 4.1. The corresponding solutions of the Lüscher
determinant condition yielding the finite volume energy levels are superimposed onto the spectrum
in fig. 3.1.
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Figure 3.1: The finite volume spectrum in three of the irreps used to constrain the �c S-wave amplitude.
Black data points and error bars represent the energies obtained from the lattice. Dotted lines indicate
thresholds. Solid lines correspond to non-interacting energies of operators included in the variational analysis.
The solutions of the Lüscher determinant condition based on our reference amplitude parametrisation are
superimposed in orange. (From fig. 5 and 6 in [3])

4. Interpretation

Despite a heavier-than-physical pion mass, our result for the �∗0 mass lies significantly below
the experimental value reported by the PDG, which is approximately 2350 MeV. It is interesting to
note that the real part of the pole location is far from the point where the amplitude touches the
unitarity bound (see fig. 4.1). This difference is also reflected in our Breit-Wigner fit: whereas the
pole of the Breit-Wigner amplitude is in agreement with our  matrix result, the mass parameter of
the amplitude takes on a value of 2380 ± 36 MeV, compatible with the PDG value.

Mass dependence

An earlier study of �c scattering [4] was conducted on an ensemble with a heavier pion mass
<c = 391 MeV, whereas the ensemble used in our present study corresponds to <c = 239 MeV.
This allows at least for the identification of a trend in the mass dependence of the amplitude. Fig.
4.1 shows the S-wave amplitudes and their poles obtained on both ensembles. At the larger mass
a shallow bound state was found just 2 ± 1 MeV below �c threshold, which migrates into the
complex plane at <c = 239 MeV. Both ampiltudes turn on rapidly above threshold indicating a
large coupling to �c, which is reflected in the residue of the pole (see the bottom part of the right
panel of fig. 4.1).

5



P
o
S
(
L
A
T
T
I
C
E
2
0
2
1
)
4
3
9

The lightest �∗0 resonance from LQCD Nicolas Lang

2150 2200 2250 2300 2350 2400

22002100 2300 2400

0.2

0

0.4

0.6

0.8

1.0

5000 1000 1500 2000 2500

2100 2200 2300

600

400

200

0

Figure 4.1: Comparison of the S-wave amplitudes (left panel), poles (right panel, top) and magnitude of
couplings (right panel, bottom) at two different mass points. Energy levels constraining the amplitudes are
indicated below the plot in the left panel. The inner bands around the amplitudes indicate the statistical
uncertainty on the parameter values resulting from the fit. For <c = 239 MeV the outer band includes
variations of the hadron masses, anisotropy and parametrisation, for <c = 391 MeV only variations of
masses and anisotropy are included. (Fig. 10 in [3])

Comparison to � 

As mentioned in the introduction, it is illuminating to compare the �c system to the closely
related � system. In [5] � scattering amplitudes were calculated at both of the above-mentioned
pion masses. We summarize the real parts of the poles extracted from the (-wave amplitudes at
the two mass points for � = 1/2 �c and � = 0 � in fig. 4.2. The shallow �c bound state at the
higher pion mass evolves into a broad near-threshold resonance at the lower mass, while the � 
pole remains bound at both masses, showing only a very slight quark mass dependence. But clearly,
the mass hiararchy of the two systems expected from the difference of the light and strange quark
masses remains the same. From the observed trend we would expect a resonant �∗0 at the physical
point whereas it is unclear whether the �∗

B0 would remain bound or evolve into a near-threshold
resonance.

Comparison to jPT results

In the limit where <D = <3 = <B the C matrix for open-charm scattering can be decomposed
in terms of the irreps of (* (3)F as 3 ⊗ 8 = 15 ⊕ 6 ⊕ 3. Using unitarised chiral perturbation theory,
it was shown in [20] that the anti-triplet pole splits into two when evolved in mass away from the
(* (3) limit towards the physical point. The mass evolution shown in Fig. 5 of the referenced work
is roughly compatible with the poles obtained on our ensembles, when adjusting for the scale setting,
suggesting that the �∗0 and �∗

B0 correspond to the same (* (3)F multiplet. The mass evolution of
the sextet state implies that the �∗0 amplitude might feature an additional pole at a higher energy.
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Figure 4.2: The real parts of the (-wave amplitude pole locations for �c and � scattering at two different
pion masses. The respective kinematic thresholds are indicated. (Fig. 13 in [3])

The contribution by Guo et. al. [21] to LATTICE2021 makes a strong case for the existence of this
pole. They perform a global fit including data obtained from the lattice for <c ≈ 391 MeV and
predict the energy dependence of the phase shift for <c ≈ 239 MeV, which shows good agreement
with our result close to �c threshold.

Outlook

Supporting the existence of the higher pole from the lattice side will require more data and
the inclusion of the coupled channel in the scattering analysis. This could be an interesting future
investigation. Additionally it would be worthwhile to perform this study at further pion masses,
providing constraints on the mass evolution predicted by chiral perturbation theory. Lastly, a similar
set of open-charm axial-vector states is predicted and a corresponding analysis performed in the
�∗c and �∗ channels would allow for a comparison.
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