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Calculating 𝐾 → 𝛾𝛾 using lattice QCD Norman H. Christ

1. Introduction

The rare decay 𝐾𝐾 → 𝜇+𝜇− is a flavor-changing neutral-current process which occurs at
second-order in the weak interaction and involves the exchange of a𝑊 and a𝑊 or a 𝑍 boson. This
is a short-distance-dominated process with an accurately measured branching ratio of 6.84(0.11) ×
10−9 [1] which can also be reliably calculated in perturbation theory. It should serve as an important
test of the standard model at one-loop. However, such a test is not possible because the third-order
electroweak process which involves a single𝑊 boson and two-photon exchange shown in Fig. 1(a)
gives a contribution to this decay which is of a similar size and presents a background which is not
adequately known.
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Figure 1: Schematic representations of the three processes discussed in this paper. (a) The two-photon
contribution to the decay 𝐾𝐿 → 𝜇+𝜇− whose lattice QCD calculation is the ultimate target of this project.
(b) The simpler decay 𝜋0 → 𝑒+𝑒− which involves some of the complications of 𝐾𝐿 → 𝜇+𝜇− and (c) The
decay 𝐾𝐿 → 𝛾𝛾 which is the calculation reported here.

While a traditional lattice QCD calculation of this two-photon-exchange contribution to
𝐾𝐿 → 𝜇+𝜇− decay involves an eight-point function and would appear to be impractical, ad-
vances introduced in the calculation of the hadronic light-by-light contribution to the anomalous
magnetic moment of the muon [2, 3], a six-point function which may offer strategies that can be
applied here.

The first step in this direction was a calculation of the simpler 𝜋0 → 𝑒+𝑒− decay [4, 5], shown in
Fig. 1(b). Here no weak interaction vertex is involved and, more important, there is no intermediate
hadronic state with a mass smaller than that of the initial pion. The presence of hadronic states with
mass smaller than that of the decaying state introduces unphysical contributions into a Euclidean-
space calculation which must be removed if the decay process of interest is to be studied. However,
it was shown that with an appropriate choice of integration contour for the loop containing the two
photon and electron propagators, the 𝜋0 → 𝑒+𝑒− decay amplitude could be expressed as the integral
of the product of a known complex function coming from the two photon and electron propagators
multiplied by a Euclidean amplitude given by the matrix element of product of two electromagnetic
currently evaluated between the 𝜋0 state and the vacuum – a matrix element that can be computed
using lattice methods.

In this paper we consider other challenges posed by the 𝐾𝐿 → 𝜇+𝜇− calculation: the presence
of the extra 𝐻𝑊 vertex and possible intermediate states with energy less than 𝑀𝐾 by beginning a
calculation of the process 𝐾𝐿 → 𝛾𝛾, shown in Fig. 1(c). We will neglect 𝐶𝑃 violation so the final
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two-photon state will be parity odd, similar to the final two photons in the decay 𝜋0 → 𝛾𝛾 and the
decay amplitude can be described by a single amplitude 𝐹𝐾𝐿𝛾𝛾:

〈𝛾(𝑘1, 𝜀1)𝛾(𝑘2, 𝜀2) |H𝑊 (0) |𝐾𝐿 (𝑘)〉 = 𝑐𝜖 𝜇𝜈𝜌𝛿 (𝑘1)𝜇 (𝑘2)𝜈 (𝜀1)𝜌 (𝜀2)𝛿𝐹𝐾𝐿𝛾𝛾 (1)

where H𝑊 (𝑥) is the effective weak Hamiltonian density. The normalization constant 𝑐 is defined
so that the 𝐾𝐿 → 𝛾𝛾 decay rate is given by:

Γ(𝐾𝐿 → 𝛾𝛾) = 𝜋

4
𝑀3
𝐾

[
𝛼
𝐺𝐹√

2
𝑉𝑢𝑠𝑉𝑢𝑑𝐹𝐾𝐿𝛾𝛾

]2
, (2)

where 𝑉𝑢𝑠 and 𝑉𝑢𝑑 are the usual CKM matrix elements, 𝛼 the fine structure constant and 𝐺𝐹 the
Fermi constant. The experimental value for 𝐹𝐾𝐿𝛾𝛾 determined from the decay rate is 𝐹𝐾𝐿𝛾𝛾 =
0.02047(9) GeV.

2. Lattice formulation

In order to compute the amplitude 𝐹𝐾𝐿𝛾𝛾 in Eq. (1) using lattice QCD we must change from
Minkowski to Euclidean time dependence and perform a calculation in a finite volume. We begin
with a standard expression for the decay amplitude in which the integrals over the time coordinates
of the two electromagnetic currents have been rotated to Euclidean time:

A(®𝑘, 𝜀1, 𝜀2) =
∫

𝑑3𝑢 𝑑3𝑣𝑒−𝑖 ( ®𝑢−®𝑣) · ®𝑘
∫ +∞

−∞
𝑑𝑣0

∫ +∞

𝑣0

𝑑𝑢0𝑒
𝑀𝐾

2 (𝑢0+𝑣0 )〈
0
��𝑇 {

(𝜀1)𝜇𝐽𝜇 ( ®𝑢, 𝑢0)(𝜀2)𝜈𝐽𝜈 (®𝑣, 𝑣0)H𝑊 (0)
}��𝐾𝐿 ( ®𝑝𝐾 = ®0)

〉
sub
. (3)

Here ±®𝑘 are the momenta of the two photons with polarizations 𝜀1 and 𝜀2. Each has energy 𝑀𝐾/2
where𝑀𝐾 is the kaon mass. In this calculation the weak Hamiltonian densityH𝑊 in Eq. (1) contains
the leading current-current operators 𝑄1 and 𝑄2. Note we have broken the symmetry between the
two electromagnetic currents by assuming 𝑢0 ≥ 𝑣0. The “sub” label on the matrix element appearing
Eq. (3) indicates that subtractions which are discussed below have been performed.

While the Euclidean-space correlation function that appears in Eq. (3) contains the on-shell
decay amplitude for 𝐾𝐿 → 𝛾𝛾, it is complicated by the now-familiar possible contributions from
additional unphysical processes in which intermediate states with energies below that of the kaon
appear. For example, when applied to the kaon state H𝑊 can create a neutral pion which can then
couple to the two final photons. Regulating the time integrals in Eq. (3) by introducing a finite
upper limit 𝑇 on the 𝑣0 integral and the same upper limit on the time separation 𝑢0 − 𝑣0, the 𝜋0

contribution can written

A 𝜋0

𝜇𝜈 ( ®𝑢, ®𝑣) =
∫ 𝑇

0
𝑑𝑣0

∫ 𝑇+𝑣0

𝑣0

𝑑𝑢0 𝑒
𝑀𝐾

2 (𝑢0+𝑣0 )〈
0
��𝐽𝜇 ( ®𝑢, 𝑢0)𝐽𝜈 (®𝑣, 𝑣0)

�� 𝜋0〉 〈𝜋0 |H𝑊 (0) | 𝐾𝐿
〉

(4)

=

[
𝑒 (𝑀𝐾−𝑀𝜋 )𝑇 − 1
𝑀𝐾 − 𝑀𝜋

] ∫ 𝑇

0
𝑑𝑤0𝑒

𝑀𝐾
2 𝑤0〈

0
��𝐽𝜇 ( ®𝑢, 𝑤0)𝐽𝜈 (®𝑣, 0)

�� 𝜋0〉 〈𝜋0 |H𝑊 (0) | 𝐾𝐿
〉

(5)
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where to obtain Eq. (5) from Eq. (4) we have changed variables from 𝑢0 to 𝑤0 = 𝑢0 − 𝑣0 and used
the known energy of the |𝜋0〉 state to perform the integral over 𝑣0. For this 𝜋0 example the “-1”
term inside the square bracket in Eq. (5) is the physical contribution of the 𝜋0 intermediate state to
the 𝐾𝐿 → 𝛾𝛾 decay amplitude while the term that grows exponentially with increasing 𝑇 is not of
physical interest and must be removed from the Euclidean expression.

Of the possible intermediate states with energy less than 𝑀𝐾 that should be considered, the
vacuum and two-pion state do not appear because we are studying the decay of a 𝐾𝐿 and neglecting
the small 𝐶𝑃 violating contribution. Likewise the 𝜋𝜋𝛾 intermediate state shown in Fig. 2(b) must
have an energy above𝑀𝐾 because the two pions are not at rest but carry the momentum of the photon
with a magnitude 𝑀𝐾/2 which implies 𝐸𝜋𝜋𝛾 ≥ 2

√
(𝑀𝐾/4)2 + 𝑀2

𝜋 + 𝑀𝐾/2 = 616MeV > 𝑀𝐾 .
While this inequality implies that for large𝑇 the unphysical term coming from the 𝜋𝜋𝛾 intermediate
state will vanish, the size of its actual contribution should be investigated carefully. For our present
study this term will be ignored.
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Figure 2: Schematic representations of three possible intermediate states which may have lower energy than
that of the kaon and contribute unphysical terms which grow exponentially in the difference between the time
when the two final-state photons are absorbed and the time at which the weak operator H𝑊 is inserted.

Of greater immediate concern are the 𝜋0 and 𝜂 intermediate states shown in Fig. 2(a). The
𝜋0 intermediate state dominates the Euclidean correlation function being studied but, as in the
calculation of Δ𝑀𝐾 , its unphysical contribution can be accurately computed and subtracted. The
𝜂 state is more difficult. While 𝑀𝜂 > 𝑀𝐾 their difference is not large making the exponential
fall-off of the unwanted term slow and the 𝑀𝐾 − 𝑀𝜂 energy denominator, similar to the 𝑀𝐾 − 𝑀𝜋

in Eq. (4), also small. Since disconnected diagrams play a large role in this 𝐾𝐿 − 𝜂 amplitude, this
term also has a large statistical uncertainty and we expect that it is best to add an extra 𝑐𝑠 (𝑠𝑑 + 𝑑𝑠)
term to H𝑊 with the coefficient 𝑐𝑠 adjusted to make the matrix element 〈𝜂 |H𝑊 |𝐾𝐿〉 = 0. This was
the most effective strategy for dealing with the 𝜂 intermediate state in the calculation of Δ𝑀𝐾 [6].

3. Computational strategy

We begin by using Eq. (3) to express the 𝐾𝐿 decay amplitude into the single 𝐽 = 0, parity odd,
two-photon final state in terms of a Euclidean correlation function depending three time coordinates:

Ã(𝑣0, 𝑥0, 𝑡𝐾 ) =
∫

𝑑3𝑢𝑑3𝑣

∫ ∞

𝑣0

𝑑𝑢0𝐸𝜇𝜈 (𝑢, 𝑣)
〈
𝐽𝜇 ( ®𝑢, 𝑢0)𝐽𝜈 (®𝑣, 𝑣0)H𝑊 (®𝑥, 𝑥0)𝐾𝐿 (𝑡𝐾 )

〉
sub . (6)

Here 𝐸𝜇𝜈 is a known function determined by the two-photon final-state and 𝐾𝐿 (𝑡𝐾 ) is an inter-
polating operator which creates a zero-momentum 𝐾𝐿 meson localized at the time 𝑡𝐾 . Spatial
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translational symmetry implies that the right-hand side does not depend spatial position ®𝑥 of the
weak Hamiltonian density H𝑊 . To extract the 𝐾𝐿 → 𝛾𝛾 decay amplitude we must evaluate Eq. (6)
at large positive values of 𝑥0 − 𝑡𝐾 and identify the coefficient of the exp[−𝑀𝐾 (𝑥0 − 𝑡𝐾 )] term.

Although we must ultimately sum over the earliest time coordinate 𝑣0 appearing in the product
of the electromagnetic currents, it is important to begin by obtaining this correlation function for
each value of 𝑣0 − 𝑥0. This will allow us to identify the exponentially increasing contribution
of the 𝜋0 intermediate state and demonstrate that this contribution has been removed when the
independently computed 𝜋0 contribution has been subtracted. Such a careful study of the 𝑣0 − 𝑥0

dependence will also be important in the next stage of this work in which the disconnected diagrams
are evaluated and the contribution of the 𝜂 intermediate state must also be removed.

While the four-point correlation function in Eq. (6) is to be evaluated in infinite volume, once
the 𝜋0 intermediate state has been removed, this hadronic amplitude is exponentially localized
and can be computed in lattice QCD in a finite volume with finite-volume errors which decrease
exponentially in the spatial and temporal size of the lattice volume. Thus, we can compute the
𝐾𝐿 → 𝛾𝛾 decay amplitude using lattice QCD by evaluating the Euclidean four-point correlation
shown in Eq. (6), perhaps summed over ®𝑥 to increase statistics, in the limit of large 𝑥0 − 𝑡𝐾 . We
will now describe the strategies used to compute the five quark-line topologies which appear in our
evaluation.

Lattice 2021: MIT -- 7/29/2021

Lattice Evaluation – Type I

• Evaluate:

• Type I(a) and I(b)

– Use a wall source at tK
for kaon

– Use many point source 

propagators at x

– I(c), I(d): exchange     
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Lattice 2021: MIT -- 7/29/2021

Lattice Evaluation – Type I

• Evaluate:

• Type I(a) and I(b)

– Use a wall source at tK
for kaon

– Use many point source 

propagators at x

– I(c), I(d): exchange     

d and s

(8)

tK

HW (x)

• Avoid V2 sum over u and v by using convolution:

d

d d

d

tK

HW (x)

Jn(v)Jm(u)

Jm(u)Jn(v)

Ib

Figure 3: Two of the four quark line topologies which we label as types Ia - Id. The types Ic and Id that
are not shown can be obtained from Ia and Ib by exchanging the 𝑠 and 𝑑 quarks. The location of the 𝐾𝐿
interpolating operator is indicated by the vertical dotted line while the vertices corresponding to the other
three operators that enter Eq. (6) are labeled explicitly.

Figure 3 shows two of the four quark-line contractions which we identify as types I(a), I(b), I(c)
and I(d). In our calculation the 𝐾𝐿 interpolating operator is constructed from a Coulomb-gauge wall
source that is used to obtain twelve strange and twelve light quark propagators, one for each spin
and color. For this type I topology three of the quark lines which join to the weak operator vertex
correspond to point-source propagators with their source at 𝑥. These point sources are randomly
distributed over the spatial volume at the time 𝑥0. For explicit calculation described below 500 such
point source propagators are computed for each configuration, distributed randomly over the entire
space-time volume.

In order to evaluate the contribution of the correlation functions shown in Fig. 3 to the𝐾𝐿 → 𝛾𝛾
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decay amplitude we must multiply these hadronic correlation functions by the electromagnetic factor
𝐸𝜇𝜈 (𝑢, 𝑣) and sum over the spatial coordinates ®𝑢 and ®𝑣. For these type I topologies this could require
a computationally expensive 𝑉2 operations where 𝑉 is the spatial volume. This computational cost
can be reduced to one of order 𝑉 ln𝑉 by exploiting the translational symmetry of 𝐸𝜇𝜈 (𝑢, 𝑣) and
using the convolution theorem:∑

®𝑣,𝑢
𝐹
(
𝑢
)
𝐺
(
®𝑣, 𝑣0

)
𝐸
(
𝑢 − 𝑣

)
=

∑
®𝑣
𝐺
(
®𝑣, 𝑣0

) {∑
𝑢

𝐹
(
𝑢
)
𝐸
(
𝑢 − 𝑣

)}
(7)

=
√
𝑉𝑇 ′

∑
®𝑣
𝐺
(
®𝑣, 𝑣0

) �[
𝐹
(
−𝑘)𝐸

(
𝑘
) ]
(𝑣). (8)

where the components 𝑘𝜇 of the vector 𝑘 are proportional to integers 𝑛𝜇 with 𝑘𝑖 = 2𝜋𝑛𝑖/𝐿
and −𝐿/2 < 𝑛𝑖 < 𝐿/2 for an even lattice size 𝐿 and 1 ≤ 𝑖 ≤ 3 while 𝑘0 = 2𝜋𝑛0/𝑇 ′ with
−𝑇 ′/2 < 𝑛0 ≤ 𝑇 ′/2. Here 𝑇 ′ is the number of sites over which 𝑢0 is summed, which is 32 in the
calculation presented here. The tilde indicates Fourier transformation, for example:

𝐹
(
𝑘
)
=
∑
𝑢

𝑒−𝑖𝑘𝑢
√
𝑉𝑇 ′

𝐹
(
𝑢
)
. (9)

Here the functions 𝐹
(
𝑢
)

and 𝐺
(
𝑣
)

represent the separate factors in terms of which the correlation
functions of type I can be expressed. This factorization requires that the contractions performed
with the weak operator be treated as a sum of terms which are each evaluated using this convolution
strategy.

Lattice 2021: MIT -- 7/29/2021

Lattice Evaluation – Type II

• Evaluate:

• Type II(a) and II(b)

– Use a wall source at tK
for kaon

– Use many point source 

propagators at x

– II(c), II(d): exchange     

d and s

(9)

• Again use convolution theorem.

• Evaluate closed loop using an all-to-all propagator.

d

d d

d

tK

HW (x)
Jm(u)

Jn(v)

HW (x)

tK

Jm(u)

Jn(v)

IIa
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Lattice Evaluation – Type II

• Evaluate:

• Type II(a) and II(b)

– Use a wall source at tK
for kaon

– Use many point source 

propagators at x

– II(c), II(d): exchange     

d and s

(9)

• Again use convolution theorem.

• Evaluate closed loop using an all-to-all propagator.

d

d d

d

tK

HW (x)
Jm(u)

Jn(v)

HW (x)

tK

Jm(u)

Jn(v)

IIb

Figure 4: Two of the four quark line topologies which we label as types IIa - IId. The types IIc and IId that
are not shown can be obtained from IIa and IIb by exchanging the 𝑠 and 𝑑 quarks.

Two of the four type II topologies are shown in Fig. 4. These are evaluated using the same
convolution strategy as was employed for type I. As is the case for type I, three point-source
propagators are needed with the point source located at the position of the weak operator. For
the case of type II, one of those point-source propagators is evaluated at the location of the weak
operator forming the closed loop.

Figure 5 shows the single type III topology. For this case we use two point-source propagators
whose source is at the location 𝑣 of the current evaluated at the earliest time, one of the three
times identified in the amplitude being computed as shown in Eq. (6). The point source propagator

6
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Lattice 2021: MIT -- 7/29/2021

Lattice Evaluation – Type III
• Evaluate:

• Type III

– Use a wall source at 

tK for kaon

(10)

• Use many (500) point sources at v

• Treat the sink u as a sequential source

• Sum exactly over x

d

d

d

d

HW (x)

Jm(u)

Jn(v)

tK

III

Lattice 2021: MIT -- 7/29/2021

Lattice Evaluation – Type V
• Evaluate:

• Type V

– Use a wall source at tK
for kaon

– Use many point source 

propagators at x

(12)

• Use many point sources at v

• Sum exactly over u

• Evaluate closed loop connected to HW using an all-

to-all propagator

• Sum exactly over x

• Strategy for locating v not yet decided

• For now omit diagrams where single current couples 

to a disconnected quark loop. 

d

u,d,s

tK

Jn(v)

Jm(u)

HW (x)

V

Figure 5: Diagrams showing the quark line topologies which we label as types III and V.

connecting the positions 𝑢 with 𝑣 in Fig. 5 is then multiplied by the electromagnetic factor 𝐸𝜇𝜈 (𝑢, 𝑣)
and the product, viewed as a function of 𝑢, is used as a source for a second solution to the Dirac
equation. The resulting “sequential” propagator is then evaluated at the location 𝑥 of the weak
operator and the result, when combined with the second point source propagator evaluated at 𝑥
summed over all values of ®𝑥 and the results saved for each value of the time 𝑥0. As for types I and II,
in the calculation presented here we use 500 point source propagators with point sources randomly
distributed over the space-time volume.

Lattice 2021: MIT -- 7/29/2021

Lattice Evaluation – Type IV

• Evaluate:

• Type IV(a) and IV(b)

– Use a wall source at tK
for kaon

– IV(c), IV(d): exchange     

d and s

(11)

• Use many point sources at v/u

• Treat the sink u/v as a sequential source

• Evaluate closed loop using an all-to-all propagator

• Sum exactly over x

d

d d

d

HW (x)
Jm(u)

Jn(v)

HW (x)

tK

Jm(u)

tK

Jn(v)

IVa
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Lattice Evaluation – Type IV

• Evaluate:

• Type IV(a) and IV(b)

– Use a wall source at tK
for kaon

– IV(c), IV(d): exchange     

d and s

(11)

• Use many point sources at v/u

• Treat the sink u/v as a sequential source

• Evaluate closed loop using an all-to-all propagator
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Figure 6: Two of the four quark line topologies which we label as types IVa - IVd. The types IVc and IVd
that are not shown can be obtained from IVa and IVb by exchanging the 𝑠 and 𝑑 quarks.

Two of the four type IV diagrams are shown in Fig. 6. These are evaluated by using two
point-source propagators with source at the position 𝑣. The loop propagator with source and sink
at the location of the weak operator is evaluated using an all-to-all propagator. For the calculation
described here we construct these all-to-all propagators from the 2,000 Dirac eigenvectors with
the smallest eigenvalues and then use propagators constructed from 768 sources, each distributed
stochastically over the full space-time volume but each source with a specific spin and color, to
correct for the difference between the low-mode approximation to this propagator and the exact
inverse of the Dirac operator. For the explicit calculation described below these 2,000 eigenvectors
where computed using a different variant of the domain wall fermion Dirac operator than used in
the rest of the calculation. While this introduces no bias in the resulting all-to-all propagators, this
imperfection in the low modes that were used increases the size of the stochastic correction and the
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correspond noise it introduces.
The type V diagrams are shown in Fig. 5. This class of disconnected graphs has been evaluated

but are not included in the results discussed below. There are other disconnected graphs in which
one or both of the current operators appears in a disconnected loop. These diagrams are expected
to be small because they vanish in the limit in which the three flavors of quarks have the same
mass and because they must be connected to the other parts of the diagram by at least three gluon
propagators.

These type V diagrams are evaluated by using an all-to-all propagator for the closed loop that
is joined to the weak vertex shown in the right panel of Fig. 5 and a point-source propagator with
source at the location 𝑣. This will allow a sum over all spatial positions ®𝑥 of the weak operator and
all space time locations 𝑢 for the second current with 𝑢0 ≥ 𝑢0.

4. Initial results

We have applied the strategies described above in an exploratory calculation performed on
117 gauge configurations separated by 10 molecular dynamics time units taken from an ensemble
generated with 2+1 flavors of Mobius domain wall fermions, a lattice volume of 243×64, an inverse
lattice spacing 1/𝑎 = 0.98(4) GeV and physical light and strange quark masses. The gauge action
is a combination of the Iwasaki gauge action and the dislocation suppressing determinant ratio
(DSDR). We show results from diagrams of type I through IV. These are all connected graphs and
results from disconnected graphs are not included. The calculation was performed with the kaon
wall source located alternately at each of the 64 possible values of 𝑡𝐾 for each configuration and the
results averaged.
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Figure 7: Plots of the amplitude shown in Eq. (3) as a function of 𝑡𝑣 = 𝑣0 − 𝑥0. (a) The left panel shows the
result including the pion intermediate state. (b) The right panel shows the amplitude after the contribution
of the pion intermediate state has been removed.

In Fig. 7(a) we show the result from the sum of these four types of diagram before the
contribution from the intermediate pion state has been subtracted as a function of 𝑡𝑣 = 𝑣0 − 𝑥0. The
expected exponential growth with increasing 𝑡𝑣 is seen with an exponent matching the expected
(𝑀𝐾 − 𝑚𝜋)𝑡𝑣 within errors. Figure 7(b) shows the same quantity after the contribution of the
𝜋0 intermediate state has been removed. Here the exponentially growing 𝜋0 contribution which

8



P
o
S
(
L
A
T
T
I
C
E
2
0
2
1
)
4
5
1

Calculating 𝐾 → 𝛾𝛾 using lattice QCD Norman H. Christ

is subtracted is obtained from separate calculations of the 〈0|𝐽𝜇𝐽𝜈 |𝜋0 > and 〈𝜋0 |𝐻𝑊 |𝐾𝐿〉 matrix
elements which appear in Eq. (5). The accurate cancellation seen in Fig. 7(b) provides a consistency
check on the calculation.

We should point out an important subtlety that arises when working only with the connected
graphs. In this case there are two neutral mesons with the mass of the pion: the usual 𝐼 = 1,
𝐼𝑧 = 0, 𝜋0 meson and a second degenerate 𝐼 = 0 pion. This second unphysical state should combine
with the omitted disconnected contributions to form the physical 𝜂 state. However, in our present
circumstances both states are present and both must be subtracted to obtain a “physical” connected
result.

The final result for the decay form factor 𝐹𝐾𝐿𝛾𝛾 from the connected diagrams can be obtained
by computing the area under the curve shown in Fig. 7(b) and adding to it the 𝜋0 contribution
arising from the “-1” term in the square brackets in Eq. (5). This is the physical contribution of the
𝜋0 intermediate state that was incorrectly removed when we subtracted the entire 𝜋0 contribution
when obtaining the result plotted in Fig. 7(b). The preliminary result for the connected contribution
to the form factor is

𝐹𝐾𝐿𝛾𝛾 = 0.0129(27). (10)

The error is statistical only and the result is somewhat smaller than the experimental value 𝐹𝐾𝐿𝛾𝛾 =
0.02047(9).

5. Outlook

The initial results described above are incomplete because the contribution of the disconnected
diagrams has not been included. While we have computed what we expect to be the leading
disconnected diagram, the type V diagram shown in Fig. 5, the results have large statistical errors.
Because of the near degeneracy of the kaon and 𝜂 mesons, as discussed above, we must remove the
𝜂 intermediate state by adding an 𝑠𝑑 + 𝑑𝑠 term to 𝐻𝑊 , an added complication made more difficult
by the large statistical noise. It is possible that a much more extensive calculation will be needed to
determine the disconnected contribution. We may need to add far more gauge configurations to the
current calculation or to work at a much smaller lattice spacing, as has been done in the calculation
of Δ𝑀𝐾 where meaningful results for the disconnected diagrams have been obtained [6]. Thus,
continued study of this 𝐾𝐿 → 𝛾𝛾 process is warranted.

Our goal of computing the two-photon contribution to the strangeness-changing, neutral-current
process 𝐾𝐿 → 𝜇+𝜇− will also require that the statistical noise present in the disconnected parts
be controlled. However, it will also be necessary to develop additional techniques to treat the 𝜋𝜋𝛾
intermediate state. While in the 𝐾𝐿 → 𝛾𝛾 case the two-pion state must carry the momentum of one
of the photons, this is no longer true for the two-muon decay and the effects of this three-particle
state must be understood. These effects include both the unphysical exponentially growing terms
that arise because the energy of the 𝜋𝜋𝛾 can be less than 𝑀𝐾 and the potentially large finite-volume
errors that can arise from kinematics where the 𝜋𝜋𝛾 has an energy close to 𝑀𝐾 . Treating this
second effect will require a generalization of the two-particle analysis given in Ref. [7]. Thus,
considerable further effort will be needed before the two-photon contribution to 𝐾𝐿 → 𝜇+𝜇− can
be computed.
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