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We report on a study of the analytical structure of the Landau gauge gluon, ghost and quark
propagators taken from lattice simulations using large physical volumes, to better access the IR
region, and large gauge ensembles to reduce the statistical uncertainties. The investigation uses
Padé approximants to look at poles and branch cuts for each of the propagators. For the gluon
propagator we identify complex conjugate poles and a branch point. For the ghost propagator the
procedure identifies a pole at zero momentum and a branch point for Minkowski-like momenta.
The quark propagator appears to have a pole for Minkowski-like momenta that is correlated with
the pion mass as expected from PCAC.
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1. Introduction and Elements of Padé Approximants

Lattice simulations are first principles computations that, for the propagators of the fundamental
fields, deliver a table of numbers. The Landau gauge propagators in QCD computed on the lattice
are functions of the Euclidean space momentum. In general, the interpretation of lattice results is
difficult and the computation of poles and branch cuts in the complex plane requires going beyond
the numerical simulations. The motivation to look at the analytical structure is multiple as it is
connected with confinement, the generation of bound states, the connection between Euclidean and
Minkowski momenta, etc.

Our approach to study the analytical structure of the propagators is based on the use of Padé
approximants and on Pommerenke’s theorem [1]. The use of Padé approximants requires describing
the lattice data in Euclidean space by a ratio of polynomials, i.e. a lattice function G(?2) computed
on a finite number of Euclidean momenta is approximated by

G(?2) ≈ %"
# (?2) = &" (?2)

%# (?2)
= [" |#] (?2) (1)

where &" and %# are polynomials of order " and # , respectively, in ?2 and assume that this
parameterization of the lattice data is valid on the all complex plane. Pommerenke’s theorem
ensures that for meromorphic functions the Padé sequences [" |" + :] with fixed : converge in
any compact set of the complex plane to G(?2). In the analysis of the lattice data we consider
sequences of Padé approximants [# |# + 1] and look how the poles and zeros evolve with # . Only
those poles whose position does not change with # can be meaningful.

In order to build a Padé approximant to the lattice propagators we use two global optimisation
methods, namely Differential Evolution (DE) and Simulated Annealing (SA), and minimise the
function ∑

9

(
G(?2

9
) − G! (?2

9
)

f(?2
9
)

)2

(2)

where the sum runs over the lattice momenta, G! (?2
9
) is the lattice estimation of the propagator and

f(?2
9
) the corresponding statistical error.
The details of the analysis of the gluon and ghost propagators that uses data from [2] and [3],

respectively, can be found in [4] with the Master thesis [5] giving further details. Herein, we report
also on a similar analysis for the quark propagator using a subset of the results published in [6].

2. Gluon and Ghost Propagators

Although in [4] we have analysed the lattice data for the gluon and the ghost propagator for
various lattice volumes, herein, due to the lack of space, we only report on the results of the largest
physical volume.

In Fig. 1 we show the sequence of poles, computed with the two optimisation methods, as a
function of # for [# |# + 1] Padé approximants and for the 1284 gluon propagator data for off-axis
momenta. As seen, the dominant poles, i.e. those with higher residuum (in red), are stable and
appear at relatively small # . Moreover, their positions in the complex plane as given by the DE
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Figure 1: Sequence of poles as given by [# |# + 1] Padé approximants for the 1284 gluon propagator data
for off-axis momenta. The upper two plots are the results computed with the DE method, while the lower
two plot show the results obtained with the SA method. The colour code refers to the absolute value of the
residua.
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Figure 2: Estimation of the gluon complex poles using different methods: DE and SA estimations (see text
for details); RGZ are the estimations of the refined Gribov-Zwanziger analysis of the lattice gluon propagator
[2]; SPM-Lattice and SPM-DSE are the estimations of [7] using either the lattice data or the propagator from
solving the gluon and ghost Dyson-Schwinger equations for pure Yang-Mills SU(3) theory, respectively;
“new result (DSE)” are the results of [8].

Figure 3: Sequence of poles (circles) and zeros (crosses) as given by [# |# + 1] Padé approximants for the
1284 gluon propagator data for on-axis momenta. The left plot are the results computed with the DE method,
while the right plot shows the results computed with the SA method. The bottom plots are zooms of the
region near the origin of the complex plane. The colour code refers to the absolute value of the residua.
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or the SA methods is essentially the same. We take this result as an indication that the gluon has
complex conjugate poles and, from a selection of the data in Fig. 1, it comes that the poles1 are at

?2 =

{
−(0.343 − 0.220) ± 8(0.301 − 0.546) GeV2, DE method,
−(0.220 − 0.150) ± 8(0.227 − 0.444) GeV2, SA method.

(3)

In Fig. 2 we collect the results of several investigations of the Landau gauge gluon propagator where
complex conjugate poles are observed. We note the good agreement from the different studies.

In Fig. 3 we show the zeros (crosses) and poles (circles) as given by the Padé approximants for
on-axis momenta. The two methods do not give compatible results, with the SA method resulting
in a collection of zeros for Minkowski type of momenta that suggests the presence of a branch cut.
The corresponding branch point occurs at the Euclidean momenta ?2 ∼ −0.5 GeV2 or is closer to
the origin of the complex plane.
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Figure 4: Sequence of poles (circles) and zeros (crosses) as given by [# |# + 1] Padé approximants for the
804 ghost propagator data for on-axis momenta. The left plot are the results computed with the DE method,
while the right plot shows the results computed with the SA method. The bottom plots are zooms of the
region near the origin of the complex plane. The colour code refers to the absolute value of the residua.

The same analysis of the ghost data shows no complex poles; see [4] for details. However, for
on-axis momenta, see Fig. 4, the Padé approximants identify a pole at the origin of the complex
plane that has the highest absolute value of the residuum, meaning that the ghost propagator is of
type / (?2)/?2. Besides this pole the Padé analysis shows a sequence of zeros that suggests also
the presence of a branch cut, with the corresponding branch point being at ?2 ∼ −0.1 GeV2.

1Note that the numbers quoted below do not match exactly those represented in Fig. 2 that use all the information
produced by the Padé analysis [4, 5].
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3. Quark Propagator
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Figure 5: The quark propagator.

For the analysis of the quark propagator we consider the subset of the ensembles generated in
[6] with lattice spacing 0 = 0.071 fm. Of these data we take for analysis only the simulations with
a pion mass of 422 MeV, 290 MeV and 150 MeV. The quark propagator is diagonal in colour space
and its Dirac structure reads

((?2) = / (?2) ?/+" (?2)
?2 + "2(?2)

. (4)

Fig. 5 shows the two reconstructed functions associated with the different Dirac structures for the
ensembles.

The Padé analysis of the vector and scalar Dirac functions show no complex poles for any of
these propagators. However, surprisingly, it points towards poles on the negative real axis, i.e. for
Minkowski type of momenta. To illustrate the results of the Padé approximant analysis, in Fig. 6
we report on the results for the quark propagator associated a pion mass of 290 MeV. A stable pole
associated with ?2 ∼ −0.2 GeV2 is clearly observed. The outcome of the analysis of the three quark
propagators points to poles at

"c 150 MeV 290 MeV 422 MeV
Vector 0.19(6) 0.22(3) 0.26(3)
Scalar 0.16(3) 0.19(6) 0.21(6)

where the pole positions are given in GeV2; recall that the poles appear for Minkowski-like momen-
tum. From our results we make the following observations. The pole position obtained from the
Dirac vector and the Dirac scalar functions are consistent within errors. The pole mass correlates
with the pion mass and increases when the pion mass increases. Moreover, the results also show
that the pole mass is compatible with "2

c ∝ <pole behaviour as predicted by PCAC. This results
should be read with care due to the large statistical errors on the pole mass that allow for different
types of power law. Finally, the computed mass poles are of the same order of magnitude as the
constituent quark mass used in many quark models.
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Figure 6: Poles (full circles) and zeros (open circles) from the analysis with Padé approximants for the
quark propagator associated with the ensemble with a pion mass of 290 MeV. In the upper plot we show the
sequence poles and zeros for the term that multiplies ?/ and in the bottom plot we show the Dirac scalar term.
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4. Summary and Conclusions

Padé approximants allow to access the analytic structure of the Landau gauge lattice propa-
gators. Accordingly, the gluon propagator is described by a pair of complex conjugate poles and
has a branch cut. The ghost propagator has a pole at zero momentum and a branch cut. The quark
propagator has a pole at Minkowski momenta that grows (linearly) with the pion mass squared. A
possible branch cut at ? < 1 GeV was also identified.

We plan to improve the precise location of the branch cut for the bosonic propagators and to
investigate the presence of multiple poles.
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