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We present results from a comprehensive study of the location of the chiral critical surface, which
separates regions of first-order chiral transitions from analytic crossovers, in the bare parameter
space of lattice QCD with unimproved staggered fermions. We study the theories with Nf ∈ [2, 8]
and trace the chiral critical surface along diminishing lattice spacing, with Nτ = {4, 6, 8}. This
allows for an extrapolation to the lattice chiral limit, where the surface has to terminate in a
tricritical line, employing known tricritical scaling relations. Knowing the phase structure in the
lattice bare parameter space allows to draw conclusions for the approach to the continuum and
chiral limits taken in the appropriate order. Our data provide evidence for the continuum chiral
limit to feature a second-order transition for all Nf ∈ [2, 7]. We perform an analogous scaling
analysis with already published data from Nf = 3 O(a)-improved Wilson fermions, which is also
consistent with a second-order transition in the continuum. A modified Columbia plot reflecting
those results is suggested.
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(a) First-order scenario for Nf = 2,mu,d = 0. (b) Second-order scenario for Nf = 2,mu,d = 0.

Figure 1: Possible scenarios for the order of the thermal QCD transition as a function of the quark masses.

1. Introduction

The nature of the QCD chiral phase transition in the limit of massless quarks has been a
longstanding, open problem. Its unambiguous, non-perturbative resolution is important, because
the light quarks in nature are close to the chiral limit. This raises the question whether traces of the
chiral phase transition might be detectable experimentally. Unfortunately, direct lattice simulations
of the chiral limit are not feasible due to the singular nature of the fermion determinant, so that
extrapolations are inevitable, introducing systematic errors.

The nature of the thermal QCD transition with Nf = 2 + 1 flavours is usually displayed as a
function of the quark masses in a Columbia plot [1], as in figure 1. The two possibilities correspond
to the predictions of the renormalisation group flow in 3D sigma models, augmented by a ’t Hooft
term for the axial anomaly, using the epsilon expansion [2]: for Nf ≥ 3 the chiral phase transition in
the massless limit is predicted to be of first order, whereas for Nf = 2 it depends on whether the axial
anomaly is effectively restored at the critical temperature (first order), or remains broken (second
order). Numerous numerical lattice investigations have been devoted to determine the location of
the second-order boundaries to distinguish between these scenarios. One generally observes widely
differing values for the pseudo-scalar mass evaluated on the critical boundary at different points
and between different actions. Unimproved staggered and Wilson actions as well as O(a)-improved
Wilson actions on coarse lattices see a first-order region both for Nf ∈ {2, 3}, but it is found to
shrink drastically as the lattice is made finer [3–12]. On the other hand, improved staggered actions
do not see a first-order region at all down to mPS ≈ 50 MeV [13]. For a detailed review, see [14].
The question is whether there are actual contradictions between different discretisations, or whether
they all converge towards one answer, and whether the correct answer has any first-order region in
the continuum limit. Here we discuss a novel way to analyse the cutoff effects associated with the
observed first-order region, which suggests a unified description of all available lattice results.
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(a) First-order scenario for Nf = 2,mu,d = 0. (b) Second-order scenario for Nf = 2,mu,d = 0.

Figure 2: Scenarios for the order of the thermal QCD transition as a function of Nf degenerate flavours [10].

2. The Columbia plot for mass-degenerate quarks and tricritical scaling

The analysis of the chiral phase transition is facilitated by considering only mass-degenerate
quarks with the partition function (in continuum notation)

Z(Nf, g,m) =
∫
DAµ (det M[Aµ,m])Nf e−SYM[Aµ ] . (1)

This can formally be viewed as a statistical system depending on a continuous parameter Nf, which
allows for an alternative interpolation between Nf = 2 and Nf = 3, rather than varying the strange
quark mass. The Columbia plots of figure 1 then translate to the analogous versions of figure 2.
Looking at the problem from this perspective offers two important benefits: First, since there is no
chiral phase transition for Nf = 1, a first-order transition in the chiral limit for any Nf > 1 must
necessarily weaken with decreasing Nf, until it vanishes in a tricritical point. This is because a
first-order transition in the chiral limit represents a coexistence of three states, with ±〈ψ̄ψ〉 , 0 and
〈ψ̄ψ〉 = 0, and the point where the diminishing latent heat vanishes is tricritical. Hence, both the
second-order and the first-order scenario for Nf = 2 now feature a tricritical point in the Columbia
plot, with either 2 < N tric

f < 3 or 1 < N tric
f < 2, respectively. Second, the Z2-critical line, which

separates the parameter region with analytic crossover from that of first-order transitions, enters the
tricritical point as a function of the symmetry breaking scaling field (am)2/5,

Nc
f (am) = N tric

f +A1 (am)2/5 +A2 (am)4/5 + . . . . (2)

The critical exponents of the scaling field take known mean field values, since the upper critical
dimension for a tricritical point is three [15]. On the lattice, there will be an additional dependence
on Nτ , viz. the lattice spacing, and hence a tricritical line. Based on these facts, and with explicit
first-order transitions seen on coarse lattices, our task is now reduced to locating the chiral intercept
N tric
f (Nτ) based on a polynomial with known exponents, rather than having to distinguish between

different sets of critical exponents.
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3. Simulations and analysis

For our numerical investigation, we use the standard unimproved Wilson gauge and staggered
fermion actions. All numerical simulations have been performed using the publicly available
OpenCL-based code CL2QCD, which is optimised to run efficiently on AMD GPUs and contains
an implementation of the RHMC algorithm for unimproved rooted staggered fermions. Version
v1.0 [16] has been employed for simulations on smaller Nτ on the L-CSC supercomputer at GSI,
while version v1.1 [17] has been run on the HLR supercomputer at Goethe University to run the
most costly simulations. The thousands of necessary simulations were efficiently handled by the
BaHaMAS software [18].

Our method to determine the order of the chiral transition by finite size scaling is standard.
We evaluate the chiral condensate 〈ψ̄ψ〉, which becomes an exact order parameter in the massless
limit, and its standardised cumulants B3,4 defined as

Bn(β, am, Nf, Nτ, Nσ) =

〈(
ψ̄ψ −

〈
ψ̄ψ

〉)n〉〈(
ψ̄ψ −

〈
ψ̄ψ

〉)2
〉n/2 . (3)

For anyfixed volume, the bare parameter space of unimproved staggered fermions is four-dimensional,
(β, am, Nf, Nτ). We first locate the phase boundary between chirally broken and restored regions
by the condition of vanishing skewness for the distribution of the chiral condensate, typically by
scanning in β, B3(βc, am, Nf, Nτ, Nσ) = 0. This defines a three-dimensional subspace, which is
composed of a region of crossover transtions and a region of first-order transitions. These are sep-
arated by a Z2-critical surface, to be identified by the parameter values where the kurtosis assumes
its 3D Ising value, B4(βc, amc, Nf, Nτ, Nσ = ∞) = 1.604. On finite but sufficiently large volumes
close to the thermodynamic limit, the kurtosis can be expanded about the critical point,

B4(βc, am, Nf, Nτ, Nσ) = 1.604 + B1(βc, Nf, Nτ) (am − amc)N
1/ν
σ + . . . , (4)

through which it passes smoothly. As the volume is increased, this approaches a step function and
the rate of the approach to the thermodynamic limit is governed by a 3D Ising critical exponent,
ν = 0.6301. Dots in the equation indicate additional terms that vanish in the infinite volume limit.
For the set of aspect ratios Nσ/Nτ ∈ {2, 3, 4, 5} used throughout, the corrections were found to be
statistically insignificant in most cases, so that fits to this equation provide estimates for the critical
masses, and hence the location of the Z2-critical surface in infinite volume.

For each parameter combination, we generally simulated four independent Monte Carlo chains
until their B4-values agreed to within three standard deviations or better, upon which they were
merged. In order to tune precisely to the phase boundary, the multi-histogram method was used to
interpolate between simulated β-values [19]. All steps of our analysis follow the details described in
[10, 20]. In addition to those, we have implemented a new error analysis for the critical masses amc

based on bootstrap estimators, which is entirely independent of the usual χ2-minimisation. Besides
providing a crucial reliability check on the fits, this procedure typically produces slightly smaller
errors [21]. Altogether, the following results are based on 120 million Monte Carlo trajectories
spread over 600 different parameter combinations, obtained over a span of several years.
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(a) Critical mass in units of T . Lines represent next-
to-leading order scaling fits to equation (5) [21].
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(b) Criticalmass in lattice units, with a leading-order
scaling fit to equation (5). From [10].

Figure 3: The chiral critical surface projected onto the (am, Nf)-plane. Regions above the lines represent
crossover transitions, those below first-order transitions.

4. The bare parameter space of staggered lattice QCD

The result of our finite size scaling analysis is the location of the chiral critical surface in the
infinite volume bare parameter space of the lattice theory. To analyse its implications, we study its
projections onto all possible planes of variable pairings. We start with figure 3(a), which represents
the lattice analogue for the sketched Columbia plots in figure 2. The data represent the chiral critical
surface corresponding to different fixed Nτ , separating crossover transitions above from first-order
transitions below. One clearly observes a strenghtening of the first-order transition with increasing
Nf and a weakening with increasing Nτ . Moreover, there is no sign of convergence towards a
continuum limit yet. Thus, large parts of the first-order region must be a cutoff effect, which is
evidently stronger for larger Nf. Our main interest is in the intercept of the curves with the lattice
chiral limit, i.e. the tricritical line N tric

f (Nτ). Tricritical scaling can be appreciated in the rescaled
figure 3(b), where earlier Nτ = 4 data approach a leading order scaling relation [10]. This allows
for an extrapolation

amc

(
Nf(Nτ), Nτ

)
= D1(Nτ)

(
Nf − N tric

f (Nτ)
)5/2
+D2(Nτ)

(
Nf − N tric

f (Nτ)
)7/2
+ . . . , (5)

where we inverted equation (2), since the Nf-values are exact while amc has errors. Note also that
the Nf = 2 data point in figure 3(b) has been obtained by a tricritical extrapolation in imaginary
chemical potential at fixed Nf = 2 [8]. This is an independent confirmation of the bare quark mass
as a tricritical scaling field near its chiral limit. Unfortunately, the scaling region is small in this
variable pairing. Next-to-leading order fits in the left figure predict N tric

f (Nτ = 4) ≈ 1.71(3) and
N tric
f (Nτ = 6) ≈ 2.20(8). One concludes that, for unimproved staggered fermions, the Nf = 2

massless theory shows a first-order transition on Nτ = 4, but a second-order transition on all finer
lattices and in the continuum. The question is what happens to the Nf ≥ 3 theories, since the Nτ = 8
data suggest a further slide of the critical line towards larger Nf.
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Figure 4: Chiral critical surface projected onto
the (β, am)-plane, fitted to next-to-leading order
tricritical scaling. From [21].
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Figure 5: Chiral critical surface projected onto
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τ ))-plane, interpolated by next-
to-leading order tricritical scaling. From [21].

More information can be obtained by analysing the same data in different variable pairings.
First, figure 4 clearly confirms the tricritical scaling behaviour, which does not get superseded by
the linear Nf-dependence observed in figure 3(a). The critical lines are implicitly parametrised
by Nf, the region above them corresponds to crossover transitions, and those below to first-order
transitions. The lower β-axis represents a first-order triple line that ends in the tricritical point
marked by the intercept of the curves with the lattice chiral limit.

In figure 5 we show the rescaled critical bare quark masses plotted as a function of Nτ . Only
a slight curvature is exhibited by those Nf with three data points, which thus are compatible with
next-to-leading order scaling and a tricritical point at some finite N tric

τ (Nf). Note however, that for
fixed Nf-values a tricritical point is not guaranteed to exist, and one must test for the functional
behaviour. As an example, figure 6 shows fits to the Nf = 5 data assuming different scenarios.
For a first-order chiral transition there is a finite continuum critical mass mc, modified by the usual
polynomial discretisation effects, so that in lattice units one has

amc(Nτ, Nf) = F̃1(Nf) aT + F̃2(Nf) (aT)2 + F̃3(Nf) (aT)3 + . . . . (6)

Two different next-to-leading order fits shown in figure 6(a) have χ2
dof > 50 and visibly fail to

describe the data. By contrast, a description with a tricritical point is possible, interpolating with
the scaling form, which needs to be inverted again,

aTc(am, Nf) = aTtric(Nf) + E1(Nf)(am)2/5 + E2(Nf)(am)4/5 + . . . , (7)(
amc(Nτ, Nf)

)2/5
= F1(Nf)

(
aT − aTtric(Nf)

)
+ F2(Nf)

(
aT − aTtric(Nf)

)2
+ . . . . (8)

This gives the central line in figure 6(b). Fits corresponding to the inverted equation (7) with E1 = 0
or E2 = 0 bound this intercept and give a measure of uncertainty. Our current data for Nf = 5 are
thus consistent with a tricritical point at N tric

τ (Nf = 5) ≈ 12.5, and the same holds for Nf = 6, 7
with slightly larger N tric

τ , cf. figure 5. This observation is fully compatible with the one made in
figure 3(a): in the lattice chiral limit am = 0 there is a monotonically rising tricritical line N tric

f (Nτ).
This has profound consequences for the approach to the continuum chiral limit. Avoiding

lattice artefacts requires to take the continuum limit before the chiral limit. Since the continuum

6
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(a) Fits to equation (6), corresponding to the first-
order scenario. From [21].
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Figure 6: Fitting and extrapolating the chiral critical line of the Nf = 5 theory.

limit is represented by the origin in figure 5, the existence of a tricritical point N tric
τ (Nf) implies that

the continuum chiral limit is inevitably approached from the crossover region, and hence can only
represent a second-order transition. In figure 5 this appears to be the case for all Nf ∈ [2, 7], which
would then all feature second-order transitions in their respective continuum chiral limits.

5. Wilson fermions

In view of our surprising findings from the last sections, it is particularly important to do a
similar analysis in a different discretisation scheme. To this end, we re-analyse already published
data [7, 11, 12] for the critical pseudo-scalar mass delimiting the first-order transition for Nf = 3
O(a)-improved Wilson fermions with Nτ ∈ [4, 12]. This is shown in figure 7, where we have
employed am2

PS ∝ am in order for the vertical axis to represent the scaling field, i.e. the (additively
renormalised) quark mass.

The lines in the figure represent leading-order scaling fits to Nτ ∈ [8, 12] and next-to-leading
order scaling fits to Nτ ∈ [6, 12] as well as to Nτ ∈ [4, 8]. An excellent description of the data
is achieved in all three cases with χ2

dof near 1 and only small variation of the intercept, which
represents a N tric

τ (Nf = 3) for this non-perturbatively improvedWilson discretisation. This confirms
the viability of our staggered analysis based on Nτ ∈ [4, 8], and it leads to the same conclusion:
the first-order chiral phase transitions observed for Nf = 3 O(a)-improved Wilson fermions are
not connected to the the continuum chiral limit, which therefore must represent a second-order
transition.

6. Conclusions

In summary, we have exploited the fact that a change of the massless chiral phase transition
from first to second order as a function of either Nf or lattice spacing must pass through a tricritical
point. Its location can be determined by tricritical scaling of the Z2-critical line, which separates
the first-order phase transitions from crossover behaviour and extrapolates to a tricritical point in
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Figure 7: Chiral critical line for Nf = 3 O(a)-improved
Wilson fermions, with various fits to tricritical scaling.
The data are taken from [12], the figure from [21].

Figure 8: Continuum Columbia plot suggested
by our results. The chiral transition is of second
order for all values of ms , its universality class is
not determined here. From [21].

the chiral limit. A comprehensive analysis of this boundary for unimproved staggered quarks on
lattices with Nτ ∈ {4, 6, 8} is consistent with all Nf ∈ [2, 7] displaying such a tricritical point. This
implies that the first-order region is not connected to the continuum limit which, therefore, must
correspond to a second-order transition. The same result is found for Nf = 3 O(a)-improvedWilson
fermions. These conclusions can only be avoided if future results for the chiral critical line on
larger Nτ break off the tricritical scaling curves. However, based on the currently available data
one would have to conclude that the Columbia plot looks as in figure 8. All results reported here
have been published in [21]. Finally, we note that our analysis can be applied to any discretisation
with explicit first-order transitions. This should allow to fully settle the question of the order of the
massless chiral phase transition in the near future.
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