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1. Introduction

The idea that a very large lattice gauge field, themaster field, can replace a conventionalMarkov
chainMonte-Carlo ensemble of a discretised field theory with a mass gap, has been brought forward
at the Granada Lattice conference [1]. If the physical size of the lattice is large enough, master-
field simulations provide a solution to the long-standing topology-freezing problem which severely
affects standard simulations when the lattice spacing is decreased. Beside this technical aspect,
master fields allow to explore new kinematical regimes and to address new physics questions
which could not be addressed in the standard framework. On the other hand, not every observable
that can be computed efficiently with well-established methods may be suitable in master-field
calculations. For a statistical data analysis on a master field, the usual ensemble average gets
replaced by a translation average of localised observables computed in physically distant regions
of space-time. Beside the numerical evidence provided in ref. [1], this method has been applied
successfully in a pure 𝑆𝑈 (3) gauge theory calculation of the topological susceptibility above the
critical temperature [2]. Including (especially light) quarks to the simulation is challenging as the
generation of these fields using standard techniques leads to various algorithmic instabilities and
precision issues. Ways to overcome these problems have been described in ref. [3] for the O(𝑎)-
improved Wilson formulation of lattice QCD. As most of these stability measures are generically
applicable, they are also successfully used in typical large-scale simulations nowadays, cf. [4, 5].

In these proceedings, we report on the first master-field simulation(s) of QCD by reviewing
our computational setup in the next section and reporting about our experiences with simulations
of such very large lattices. While we will focus on the technical aspects here, first physics results
are presented in a separate contribution to these proceedings [6].

2. Master-field simulations

The computational setup formaster-field simulations derives from our initial study of stabilising
measures for QCD simulations withWilson fermions [3]. We use the tree-level Symanzik-improved
gauge action [7] and 2+1 dynamical quark flavours employing the new, exponentiated 𝑂 (𝑎)-
improvedWilson fermion action with non-perturbatively tuned Sheikholeslami–Wohlert coefficient
𝑐sw. The A-lattices simulated in ref. [3] constitute an approximate chiral trajectory at a rather coarse
lattice spacing of 𝑎 = 0.094 fm (𝛽 = 6/𝑔20 = 3.8). It enables us to approximately fix 𝑚𝜋 = 270MeV
and𝑚K = 450MeV in advance. We aimat simulatingmaster fields of size 964 and 1924with periodic
gauge and anti-periodic fermion fields. In this way wewill be able to study the statistical accuracy of
physical observables and possible systematic effects through various sub-volume averages. These
lattices correspond to 𝑚𝜋𝐿 = 12.5 and 25, or lattice extents of 9 fm and 18 fm, respectively. All
simulations are performedwith the publicly available openQCD code [8] which supports master-field
simulations from version 2.0 on. It also supports parallel IO and quadruple precision arithmetic in
global sums, both particularly relevant for very large lattices.

2.1 Algorithm details

Instead of the usual HybridMonte-Carlo (HMC) algorithm [9], we use the StochasticMolecular
Dynamics (SMD) algorithm [10, 11] to update the gauge fields 𝑈 (𝑥, 𝜇), pseudo-fermion fields
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𝜙(𝑥) and momentum fields 𝜋(𝑥, 𝜇). Each update cycle starts with a refreshment of 𝜋 and 𝜙 fields
(keeping𝑈 constant) using a linear combination of their current state with random fields drawn from
a normal distribution. Subsequently, the molecular dynamics (MD) equations are integrated over a
time-distance 𝜖 using a reversible symplectic integration rule, followed by the usual accept-reject
step to guarantee that the update cycle (𝑈, 𝜋, 𝜙) → (𝑈 ′, 𝜋′, 𝜙′) preserves the correct distribution.
If a new field configuration is rejected, we restart with (𝑈,−𝜋, 𝜙′), i.e., the gauge field is set to
𝑈 and the initial momentum field to −𝜋 while keeping 𝜙′ fixed. For sufficiently small 𝜖 , it can
be shown that this SMD algorithm is ergodic [12]. In practise, we aim at an average acceptance
rate 〈𝑃acc〉 = 〈min{1, 𝑒−Δ𝐻 }〉 ≥ 98% which, at the lattice spacings considered in [3], typically
leads to values of 𝜖 < 1/3. While such high acceptance rates are usually avoided when the HMC
algorithm is in use, it is the relevant range when using the SMD algorithm. Beside 𝜖 > 0, the SMD
introduces a friction parameter 𝛾 > 0, which determines how quickly the memory of previous field
configurations is lost. Throughout our simulations, we fix it to 𝛾 = 0.3 which amounts to a choice
that was found to optimize the observed autocorrelation times of physical quantities in 𝑆𝑈 (3) gauge
theory [13].1

Apart from the algorithm described above, we chose established techniques in our simulation:
even-odd preconditioning, SAP (Schwarz alternating procedure) preconditioned deflated solvers,
twisted-mass factorisations for the light-quark determinant, rational approximations for the strange-
quark determinant and a hierarchical 4th-order integrator with two integration levels for the MD
equations. To exclude statistically relevant effects of numerical inaccuracies while simulating very
large lattices, it is advantageous to slightly adapt the solver parameters for each of the following
three categories. A uniform-norm stopping criterion is used in the generation of pseudo-fermion
fields and the corresponding force calculations, while the standard two-norm is used in the action
computations. We furthermore set the bound on the residues to 10−12 for the solvers applied to
the action and pseudo-fermions, while those for the forces derived from the pseudo-fermions of the
light-quark doublet are set to 10−11 and those of the heavier strange quark to 10−10.

2.2 Thermalisation strategy

The cost of simulating master-field-sized lattices essentially agrees with the computing time
required to reach thermal equilibrium. This effort mainly scales with some power of the volume
and the exponential autocorrelation time of the underlying algorithm. To date, both remain an
obstacle for speeding up large-scale simulations of QCD. Hence, we follow common thermalisation
strategies, i.e., we start from smaller lattices and periodically extent one direction at a time to allow
the gauge field to relax to the new setup and to adapt algorithmic parameters, if needed. Our first
goal was to reach thermal equilibrium on the 964 lattice before moving on to 1924. We started from
an 𝐴2 configuration with small total topological charge 𝑄 (a 96 · 323 lattice with 𝑚𝜋 = 294MeV,
cf. [3]), and changed the light and strange quark hopping parameters to our target masses as well as
the twisted-mass reweighting parameter 𝜇0 = 0.002→ 0.0. For master fields, the latter is required
as standard reweighting techniques are not compatible with the way expectation values are being
calculated, cf. refs. [1, 6]. But what about the (Zolotarev optimal) rational approximation of the

1In contrast to the discussion in [1], it was emphasized in [3] that the effort of simulating HMC and SMD is comparable
such that the algorithmic exactness, using the accept-reject step (more frequently for the SMD), should not be given up.
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Figure 1: Monitoring observables during final thermalisation of the 964 lattice.

strange-quark determinant which generically requires reweighting? In this case, the reweighting
corrects for the numerical approximation error that can be reduced with increasing simulation cost.
In practise, one has to ensure that the approximation error is negligible for physical observables 𝑂.
The absolute deviation between the reweighted and non-reweighted observable fulfills the following
generic and strict bound [14] ��� 〈𝑂𝑊〉

〈𝑊〉 − 〈𝑂〉
��� ≤ 𝜎𝑂

𝜎𝑊

〈𝑊〉 . (1)

Accordingly, any observable 𝑂 is guaranteed to be unbiased w.r.t. reweighting if, for instance,
𝜎𝑊 /〈𝑊〉 ≤ 0.1 is chosen as upper bound on the relative uncertainty of the reweighting factors.
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lattice #cores 𝑡SMD [sec] 𝑡MDU [sec] MDU Mcore-h

96 · 323 16 · 48 246 794 155 0.03
962 · 322 48 · 48 277 1108 125 0.09
963 · 32 64 · 48 672 2800 176 0.42
964 128 · 48 1080 5020 206 1.77

total: 662 2.31

Table 1: Thermalisation cost till first 964 master-field lattice. We provide the measured average time per
SMD cycle (𝑡SMD) and the associated time to complete one molecular dynamic unit (𝑡MDU), followed by the
simulation length (in MDU) for each lattice size and the corresponding simulation cost in million core-hours.

Here 𝜎𝑊 is the standard deviation of the strange-quark reweighting factors 𝑊 , and 𝜎𝑂 that of the
observable. For this reason, it is advisable to also compute the strange-quark reweighting factors on
the smaller lattices, beside typical observables used to monitor the ongoing thermalisation phase.
In fig. 1 we show a subset of our monitoring observables during the final thermalisation of the
964 lattice: the flow time 𝑡0 (computed with Wilson flow from the clover energy density), the total
topological charge 𝑄 =

∑
𝑥 𝑞(𝑥), and the topological susceptibility 〈𝑄2〉/𝑉 ' ∑

|𝑥 | ≤20〈〈𝑞(𝑥)𝑞(0)〉〉
as a function of the MD time. Note that 〈〈·〉〉 denotes the aforementioned sub-volume average,
cf. [1]. The latter two have been measured directly at flow time 𝑡 = 2.46. Uncertainties have
been estimated through master-field translation averages. These quantities have large integrated
autocorrelation times and are therefore expected to be among the observables that thermalise most
slowly. In table 1 we present our cost figure for reaching the first 964 master field. The chosen
rethermalisation times are significantly larger than the expected autocorrelation time of 30 MDU
and any residual thermalisation effects are therefore expected to be well below the statistical errors.
In all thermalisation steps we additionally checked for spikes in Δ𝐻 and that 〈𝑒−Δ𝐻 〉 = 1 holds
within errors. No problems have been observed. The residual systematic effects of the rational
approximation are controlled by adjusting the approximation such that 𝜎𝑊 is 1-2% of its average
value. On the 964 lattice, and with the spectral range of [0.015,8.0], this level is reached with 11
poles.

2.3 Eigenvalues of the deflated Dirac operator

In the very same way, we continued increasing the volume towards our 1924 master field.
With increasing 𝑉 we began to observe rare spikes in Δ𝐻 as well as failures to update, generate
or regenerate the deflation subspace. This can happen for no particular reason, because the little
system can become nearly singular even if the Dirac operator is well conditioned. As a protective
measure, the deflation (DFL) subspace was more regularly regenerated and the number of Krylov
vectors for the solver of the little (deflated) system was significantly increased, both to no avail.
The number of problematic events increased with the volume (and smaller pion masses), impacting
the performance and continuity of the simulation. Its source is mostly unknown and multiple,
interfering effects could play a role. To investigate the issue we computed the eigenvalues of the
little Dirac operator, 𝐴w = 𝑃0𝐷𝑃0, using the freely available software package SLEPc [15–18] for
this non-hermitean operator. 𝑃0 is an orthogonal projector to the DFL subspace, spanned by a
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lattice #cores 𝑡SMD [sec] 𝑡MDU [h] MDU Mcore-h

192 · 963 128 · 48 2740 794 95 2.32
1922 · 962 256 · 48 3080 4.73 45 2.54
1923 · 96 512 · 48 3190 5.34 35 4.49
1924 768 · 48 4789 9.71 102 35.12

total: 277 44.47

Table 2: Thermalisation cost till first 1924 master-field lattice.

set of global low-modes ℒ𝐷 = {𝜓1, . . . , 𝜓𝑁𝑠
} of the Dirac operator. For more details we refer to

refs. [19, 20]. The results are presented in fig. 2 for both the smallest (magnitude) eigenvalues of 𝐴w
and its even-odd preconditioned version �̂�w on our set of 𝐴-lattices. They obviously confirm the
general expectation that the smallest eigenvalue decreases with the quark mass for both operators.
Computing the 96 lowest eigenvalues on a total of 20 configurations, we can clearly identify a
few eigenvalues close to the real axis which are about a factor 2 smaller than the majority that
forms an approximate boundary wall. Such fluctuations can result from the roughness of the gauge
field or from unaccounted numerical instabilities of unknown source (after all we are simulating at
coarse lattice spacing, 𝑎 = 0.094 fm). Although we were always able to restart the simulation from
reseeding the random number generator, it requires additional measures to continuously simulate
large master-field lattices.

2.4 Multilevel deflated solver

To solve the problem, a multilevel deflated solver is being introduced as a natural extension
of the current single-level DFL solver of openQCD-2.0, and effectively preconditions the standard
little Dirac operator. For that purpose, a stack of DFL subspaces is introduced for block-grid levels
0 ≤ 𝑘 ≤ 𝑘max, such that the little Dirac operator at block-level 𝑘 fulfills 𝐴𝑘 = 𝑃𝑘𝐴𝑘−1𝑃𝑘 = 𝑃𝑘𝐷𝑃𝑘 .
This means that 𝐴w = 𝐴0 if 𝑘max = 0 and that all block-level operators can be derived from the same
set of global low modes ℒ𝐷 . Especially larger lattices, able to host two or more deflation levels,
can profit from the additional hierarchy through reduced computational costs. In contrast to the
standard single-level DFL solver, the new implementation uses double precision arithmetic also in
the projection/lifting operations to further gain stability at the expense of an additional overhead. We
continued thermalising the 1924 master field with this new solver and indeed observed a significant
reduction of failing solves. The question remains whether further tuning of the solver parameters
can resolve the remaining instabilities. In fig. 2 we also provide a cost figure for thermalising the
1924 master field. Due to various parameter and algorithmic changes we only give average time
estimates, corresponding to the true cost in core-hours.

3. Summary

In this work, we have described our experience simulating master-field lattices of 2+1 flavour
QCD with non-perturbatively improved exponentiated-clover Wilson fermions. The previously
proposed stabilising measures clearly improve our ability to simulate coarse lattice spacings and
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large lattices at the same time. Very large physical-volume simulations, like (18 fm)4, have become
possible using today’s high-performance computers but remain challenging for Wilson fermions
with anti-periodic boundary conditions. To further mitigate failures of the underlying solvers, we
introduced the multilevel deflated solver, allowing us to produce a single 1924 master-field lattice.
It appears that the required gain in stability comes at additional costs, confirming the no-free-lunch
theorem once more. In the future we plan to perform new master-field simulations at a finer
lattice spacing and a smaller quark mass. Going forward, we plan to further study the problems
encountered at coarse lattice spacing and look forward to first physics applications on the reported
master fields.
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Figure 2: Lowest (complex) eigenvalue spectrum of the little Dirac operator 𝐴w (left) and �̂�w (right) for light
pseudoscalar meson masses of 408, 293 and 215MeV (top to bottom) on a 96 × 323 lattice (𝑎 = 0.094 fm).
The data points comprise the lowest 96 eigenvalues computed on each of 20 configurations.
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