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This work summarizes the lattice QCD calculations of the axial 𝛾𝑊-box diagrams relevant for
the semi-leptonic decays of pions and kaons. Using the method combining lattice data at small
𝑄2 and perturbative calculation at large 𝑄2, the 𝛾𝑊-box contributions to the pion decays at the
physical point and the kaon decays at the flavor SU(3) limit are calculated with the total uncertainty
controlled at the level of ∼ 1%. These results could be used to determine the low energy constants
for chiral perturbation theory with its uncertainty reduced significantly. This work could be
generalized to the cases of the free and bound neutron decays, which plays an important role in
the determination of the CKM matrix element |𝑉𝑢𝑑 |, which is essential to the unitarity test of the
CKM matrix.
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1. Introduction

The Cabibbo-Kobayashi-Maskawa (CKM) matrix is a 3 × 3 unitary matrix that describes the
strength of the weak interactions of quarks. The test of the CKM unitarity plays a key role in the
search of new physics beyond the Standard Model. As quoted in the 2021 review by the Particle
Data Group[1], there exists a 2 ∼ 3𝜎 deviation from unitarity in the first row of CKM matrix
elements,

|𝑉𝑢𝑑 |2 + |𝑉𝑢𝑠 |2 + |𝑉𝑢𝑏 |2 = 0.9984(6)𝑉𝑢𝑑 (4)𝑉𝑢𝑠 . (1)

Since |𝑉𝑢𝑏 | is negligible, |𝑉𝑢𝑑 | and |𝑉𝑢𝑠 | dominate the uncertainty. |𝑉𝑢𝑑 | used in the unitarity test
is from superallowed 𝛽 decays. The uncertainty of 𝑉𝑢𝑑 becomes larger compared to the 2020 PDG
review because of the update of the radiative correction (RC) term which depends on both nuclear
structure (NS) and the energy of the electron. In the 2020 review, the deviation mentioned above
was 3𝜎 due to the smaller uncertainty of 𝑉𝑢𝑑 .

The reason for the deviation in PDG 2020 is from the analysis of the RCs. Previously, the RCs
for the nuclear 𝛽 decays is calculated by Marciano and Sirlin[2] with the vector meson dominance
providing the information of the intermediate distances. To reduce the uncertainty of RCs, Chien-
Yeah Seng et. al.[3] adopted a dispersive analysis and a ∼ 3𝜎 deviation from CKM unitarity was
found due to the update of |𝑉𝑢𝑑 |.

In addition to the nuclear and nucleon beta decays, the semi-leptonic decays of mesons can
also be used to determine the CKM matrix elements. For example, |𝑉𝑢𝑑 | can be extracted from
pion decays while |𝑉𝑢𝑠 | from kaon decays. The master formula of the decay rate of 𝜋ℓ3 [4] and 𝐾ℓ3
[1] reads

Γ𝜋ℓ3 =
𝐺2
𝐹𝑚

5
𝜋

64𝜋3 (1 + 𝛿𝜋) |𝑉𝑢𝑑 |2
�� 𝑓 𝜋+ (0)

��2 𝐼𝜋 , (2)

Γ𝐾ℓ3 =
𝐺2
𝐹𝑚

5
𝐾

192𝜋3 (1 + 𝛿𝐾 ) |𝑉𝑢𝑠 |2 | 𝑓 𝐾+ (0) |2𝐼ℓ𝐾 𝑆EW𝐶
2. (3)

where 𝐺𝐹 = 1.1663787(6) × 10−5GeV−2 is the Fermi’s constant, 𝑚𝐻 is the mass of the initial
hadrons, 𝑓 𝐻+ (0) is the form factor at zero momentum, 𝛿𝐻 is the RCs, 𝐼𝐻 is the phase-space integral
(𝐻 = 𝜋, 𝐾). 𝑆𝐸𝑊 is the short-distance electroweak factor, 𝐶 is the Clebsch-Gordan coefficient with
𝐶 = 1 for 𝐾0

ℓ3 and 𝐶 =
√

2
2 for 𝐾+

ℓ3.
Since in the intermediate-distance region (0.1GeV2 ≲ 𝑄2 ≲ 1GeV2) the QCD contribution

is nonperturbative, a first-principle lattice-QCD study of the 𝛾𝑊-box diagrams is appealing. In
the recent years, lattice QCD studies play an increasingly important role in high-precision flavor
physics [5]. The research horizon has been extended to include the quantities which are very
difficult to compute on the lattice. The examples involve long-distance contributions to rare kaon
decays [6–11] and electromagnetic corrections to the leptonic and semi-leptonic decays [12–20].
In this proceeding, we focus on the lattice-QCD calculation to determine the 𝛾𝑊-box corrections
to semi-leptonic decays with controlled uncertainties[21, 22].

2. Theoritical Analysis

There are two representations of the analysis in the RCs. One is derived by Sirlin [23], the other
is based on chiral perturbation theory (ChPT) [20]. Let’s first introduce Sirlin’s representation.
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2.1 Sirlin’s representation

Sirlin’s representation is based on the current algebra, which describes the equal-time commu-
tation relations of the current density operators. For the weak and the electromagnetic currents, it
satisfied that [

𝐽0
𝑊 (®𝑥, 𝑡), 𝐽𝜇𝑍 (®𝑦, 𝑡)

]
= cos2 𝜃𝑊 𝐽

𝜇
𝑊 (®𝑥, 𝑡)𝛿3(®𝑥 − ®𝑦),[

𝐽0
𝑊 (®𝑥, 𝑡), 𝐽𝜇𝛾 (®𝑦, 𝑡)

]
= 𝐽𝜇𝑊 (®𝑥, 𝑡)𝛿3(®𝑥 − ®𝑦),[

𝐽0
𝑊 (®𝑥, 𝑡), 𝐽𝜇†𝑊 (®𝑦, 𝑡)

]
= −𝐽𝜇3 (®𝑥, 𝑡)𝛿

3(®𝑥 − ®𝑦) + S.T. ,

𝐽
𝜇
3 ≡ �̄�𝐿𝛾𝜇𝐶3𝜓𝐿 = 2

(
sin2 𝜃𝑊 𝐽

𝜇
𝛾 + 𝐽𝜇𝑍

)
,

(4)

where S.T. is a c-number called “Schwinger term".
Using current algebra, the RCs for the 𝛽 decays could be parameterized as [23]

𝛿 =
𝛼𝑒
2𝜋

[
�̄� + 3 ln

𝑚𝑍
𝑚𝑝

+ ln
𝑚𝑍
𝑚𝑊

+ �̃�𝑔
]
+ 𝛿QED

HO + 2□𝑉 𝐴𝛾𝑊 , (5)

where □𝑉 𝐴𝛾𝑊 is the RC term associated with the axial part of the 𝛾𝑊-box diagrams, which could be
obtained with the master formula

□𝑉 𝐴𝛾𝑊

���
𝐻

=
3𝛼𝑒
2𝜋

∫
𝑑𝑄2

𝑄2

𝑚2
𝑊

𝑚2
𝑊 +𝑄2

𝑀𝐻

(
𝑄2

)
, (6)

where 𝑄2 = −𝑞2 is the spacelike four-momentum square, 𝑀𝐻 (𝐻 = 𝜋, 𝐾) is the hadronic function
defined by [21]

𝑀𝐻

(
𝑄2

)
= −1

6
1
𝐹𝐻+

√
𝑄2

𝑚𝐻

∫
𝑑4𝑥𝜔(𝑡, ®𝑥)𝜖𝜇𝜈𝛼0𝑥𝛼H𝑉 𝐴

𝜇𝜈 (𝑡, ®𝑥), (7)

𝜔(𝑡, ®𝑥) =
∫ 𝜋

2

− 𝜋
2

cos3 𝜃𝑑𝜃

𝜋

𝑗1

(√
𝑄2 | ®𝑥 | cos 𝜃

)
| ®𝑥 | cos

(√
𝑄2𝑡 sin 𝜃

)
. (8)

According to the current algebra analysis of Sirlin, for the process of the beta decays, if the
hadrons of the initial and the final states have the same masses, the contribution for RCs from
𝛾𝑊-box diagram is the only term sensitive to the non-perturbative hadronic effects, so it dominates
the theoretical uncertainty.

For pion decays, this condition is satisfied naturally. However, for kaon decays, this condition
couldn’t be satisfied. To avoid the full calculation of RCs, including some contributions of five-point
functions, we could combine the Sirlin’s representation with the analysis of ChPT.

2.2 ChPT

ChPT is an effective field theory which involves the low-energy degrees of freedom like
mesons, rather than quarks and gluons. To make the effective theory predictable, low energy
constants (LECs) are needed. LECs associated with the semi-leptonic decays are 𝑋1 and �̃�phys

6 [20].
Previously, LECs of ChPT are obtained from some model-dependent analysis, like the minimal

resonance model. Since it’s hard to estimate the uncertainty, Ref.[24] assigned LECs with a
uncertainty of 100%.
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𝑋1 = −3.7(3.7) × 10−3, �̃�
phys
6 = 10.4(10.4) × 10−3. (9)

The relationship between RCs and LECs could be derived as

𝛿ℓ𝐾± = 2𝑒2
[
−8

3
𝑋1 −

1
2
�̃�

phys
6

(
𝑀𝜌

) ]
+ · · · , (10)

𝛿ℓ
𝐾 0 = 2𝑒2

[
4
3
𝑋1 −

1
2
�̃�

phys
6

(
𝑀𝜌

) ]
+ · · · , (11)

𝛿ℓ𝜋± = 2𝑒2
[
−2

3
𝑋1 −

1
2
�̃�

phys
6

(
𝑀𝜌

) ]
+ · · · . (12)

The neutral kaon decay mode is free from the 𝜋0 − 𝜂 mixing, so it is chosen to extract LECs.
Together with the process of 𝜋𝑒3 decays, we can finally derive the LECs mentioned above.

The necessary condition to use Sirlin’s representation is the hadrons 𝐻𝑖 and 𝐻 𝑓 having nearly
the same masses. So firstly, we can calculate the RCs in the flavor SU(3) limit, which satisfies
𝑚𝐾 = 𝑚𝜋 .

Obviously, the result from this unphysical setup couldn’t give the physical result, however,
LECs of the ChPT could be obtained. Since the LECs don’t depend on the quark masses, one
can calculate the physical RCs using ChPT. Inserting the result of 𝛾𝑊-box contribution into the
equation, the LECs are calculated with the uncertainty under control.

3. Lattice Setup

The information of the ensembles is shown in Table 1. We use five gauge ensemble with
2 + 1-flavor domain wall fermion. Each ensemble is set at the physical pion mass. Here 48I and
64I use the Iwasaki gauge action in the simulation (denoted as Iwasaki in this work) while the other
three ensembles use Iwasaki+DSDR action (denoted as DSDR). The flavor SU(3) limit is achieved
by taking the strange quark mass to be the same as the light quarks’.

Ensemble 𝑚𝜋 [MeV] 𝐿 𝑇 𝑎−1 [GeV]
24D 141.2(4) 24 64 1.015

DSDR 32D 141.4(3) 32 64 1.015
32D-fine 143.0(3) 32 64 1.378

Iwasaki
48I 135.5(4) 48 96 1.730
64I 135.3(2) 64 128 2.359

Table 1: Information of ensembles used in this work. For each ensemble we list the pion mass 𝑚𝜋 , the
spatial and temporal extents, 𝐿 and 𝑇 , and the inverse of lattice spacing 𝑎−1.

4. Numerical Results

The result of this proceeding is published in Ref.[21, 22]. Here we just give some brief
introduce. For more detailed results, you can search for the published works.

4
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Figure 1: 𝑀𝜋 (𝑄2) as a function of 𝑄2. The curves labeled by64I, 48I, 32D, 32D-fine and 24D are lattice
results, while the curves labeled by PT are from the perturbation calculation. We also calculate the result
from a particular type of Feymann diagram, denoted as type (A) here, to estimate the size of higher twist.

The lattice data and perturbative calculation for pion decays is shown in Fig.1. We can find
that for small 𝑄2, lattice data are consistent with each other. When the 𝑄2 gets larger, the lattice
discretization effects dominate the uncertainties and we should take perturbation calculation. So
does the result in kaon decays. Choosing the 𝑄2

cut = 2GeV2, the RCs of these two processes could
be obtained as

□𝑉 𝐴𝛾𝑊

���
𝜋
= 2.830(11)stat(28)syst × 10−3 (13)

□𝑉 𝐴𝛾𝑊

���
𝐾 0,SU(3)

= 2.437(20)stat(39)syst × 10−3 (14)

On the other hand, the box terms can also be represented in the ChPT. By combining the Eq.
(5) and Eq.(10) together with Eq.(12), the relations between the axial 𝛾𝑊-box contribution and
LECs are

− 8
3
𝑋1 + �̄�phys

6
(
𝑀𝜌

)
= − 1

2𝜋𝛼

(
□𝑉 𝐴𝛾𝑊

���
𝐾 0,SU(3)

− 𝛼

8𝜋
ln
𝑀2
𝑊

𝑀2
𝜌

)
+ 1

8𝜋2

(
5
4
− �̃�𝑔

)
(15)

4
3
𝑋1 + �̄�phys

6
(
𝑀𝜌

)
= − 1

2𝜋𝛼

(
□𝑉 𝐴𝛾𝑊

���
𝜋
− 𝛼

8𝜋
ln
𝑀2
𝑊

𝑀2
𝜌

)
+ 1

8𝜋2

(
5
4
− �̃�𝑔

)
(16)

where �̄�phys
6 is equivalent to �̃�phys

6 up to the pQCD corrections,

�̄�
phys
6

(
𝑀𝜌

)
≡ �̃�

phys
6

(
𝑀𝜌

)
+

(
𝑋

phys
6

)
𝛼𝑠

(17)
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For the 𝜋𝑒3 decays, higher-order QED effects 𝛿QED
HO and 𝛾𝑊-box contribution □𝑉 𝐴𝛾𝑊 dominate

the uncertainty of 𝛿. The uncertainty of axial 𝛾𝑊-box contribution used to be estimated with the
LECs of ChPT before. With □𝑉 𝐴𝛾𝑊 obtained from lattice method, it’s possible to almost completely
remove the dominant uncertainty from the LECs,

𝛿 = 0.0334(10)LEC(3)HO → 0.0332(1)𝛾𝑊 (3)HO (18)

Using the new RCs, the |𝑉𝑢𝑑 | obtained from the pion decays could updated as

|𝑉𝑢𝑑 | = 0.9740(28)exp(1)th, (19)

which leads to a reduction of the total uncertainty by a factor of 3.
For the physical 𝐾ℓ3 decays, since 𝑚𝐾 ≠ 𝑚𝜋 , Sirlin’s representation couldn’t be used directly,

contributions of other diagrams should be considered in the analysis of RCs of 𝐾ℓ3 decays, like
the contribution of the five-point correlation function. To avoid this difficulty, a calculation of the
𝛾𝑊-box corrections in the flavor SU(3) limit could be taken firstly, in which the strange quark mass
is tuned down to be the same as the light quark mass, so that 𝑚𝐾 = 𝑚𝜋 .

By using this unphysical setup, combined with the results of the 𝜋𝑒3 decays, LECs of the ChPT
could be obtained. Then, by using ChPT, one can calculate the physical RCs. Inserting the result of
𝛾𝑊-box contribution into the equation, the LECs are calculated with the uncertainty under control.

𝑋1 = −2.2(4) × 10−3, �̄�
phys
6 = 16.9(7) × 10−3 (20)

Putting the new LECs into Eq. (10) and Eq.(11), the physical RCs of 𝐾ℓ3 decays is updated as
(in units of %)

𝛿𝑒
𝐾 0 = 0.99(19)𝑒2𝑝4 (11)LEC → 1.00(19),
𝛿
𝜇

𝐾 0 = 1.40(19)𝑒2𝑝4 (11)LEC → 1.41(19),
𝛿𝑒𝐾± = 0.10(19)𝑒2𝑝4 (16)LEC → −0.01(19),
𝛿
𝜇
𝐾± = 0.02(19)𝑒2𝑝4 (16)LEC → −0.09(19).

(21)

where the uncertainty from the LECs are almost negligible now. The dominate uncertainty arises
from higher order terms in ChPT expansion, denoted as (𝑒2𝑝4) here.

5. Conclusions

The axial 𝛾𝑊-box contribution □𝑉 𝐴𝛾𝑊 is the only term sensitive to hadronic scales in RCs, so
its determination requires non-perturbative treatment. In this work, we perform the lattice QCD
calculation of the □𝑉 𝐴𝛾𝑊 in both pion and kaon semi-leptonic decays.

For the 𝜋𝑒3 decays, we can adpot Sirlin’s representation in Eq.(5) and get the RCs 𝛿, which
leads to an uncertainty reduction of the theoretical prediction of |𝑉𝑢𝑑 | from pion semi-leptonic
decays by a factor of 3. The uncertainty of the experimental results for the pion decays is still so
large that this result cannot test the CKM unitarity. However, this technique could be generalized to
the calculation of the nucleon decays, like free and bound neutron decays, which can provide more
precise determination of |𝑉𝑢𝑑 | and test the CKM unitarity.
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For the 𝐾ℓ3 decays, by matching the results from Sirlin’s representation in flavor SU(3) limit
and ChPT, we can obtain the LECs with segnificantly reduced error, which further gives the physical
RCs. The uncertainty from LECs is almost removed, and now the residual uncertainty is dominated
by higher terms in the power counting of the ChPT.
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