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A Fresh Look at the Chemical Potential on the Lattice
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1. Introduction

Quantum chromodynamics (QCD) is now widely accepted as the theory of strong interactions.
However, simple phenomenological models were in vogue much before its heralding. In view of
the strong non-perturbative nature of the hadronic world these models continue to be employed for
qualitative, and at times even quantitative, understanding of the underlying physics. The behaviour
of strongly interacting matter under extreme temperatures and/or densities is one such area. Based
on chiral symmetries of QCD and the corresponding Nambu-Jona Lasinio type of models the
expected phase diagram for 2 light and one moderately heavy quark has emerged [1], as displayed
in Figure 1. One of its fundamental aspect is the critical point in T-µB plane, where µB is the
baryon chemical potential which governs the net baryon density.

Figure 1: A typical QCD phase diagram in the T-µB plane, showing the QCD critical point for mu = md >>

ms . Taken from Ref. [1].

A lot of theoretical and experimental attention has been focused on locating the QCD critical
point, and in devising its characteristic signatures. In particular, it was suggested that higher
moments of fluctuations are enhanced near a critical point and a non-monotonic behaviour in them
as a function of colliding energy could be a signal for criticality [2]. Inspired by lattice QCD
results, employing baryonic higher order fluctuations was advocated [3]. Exciting experimental
results [4] from the STAR collaboration on net proton fluctuations seemed intriguingly like the
theoretical expectations [3]. Sixth order baryonic fluctuations have been advocated as a possible
tool to establish the expected O(4)-criticality for the two-flavour QCD at nonzero temperatures
with µB = 0 [5]. Finally, various methods to determine the location of the critical point using
lattice techniques, specifically the Taylor series method, need higher order baryonic fluctuations. It
thus appears worthwhile to examine the higher order quark number susceptibilities (QNS) carefully
which we set out to do here.

2. The µ , 0 problems

It is well-known that the fermionic determinant becomes complex for nonzero quark chemical
potential. This leads to the well-known sign/phase problem due to the lack of positivity of the
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measure of the corresponding path integral. Several approaches have been proposed, many of
which rely eventually on using the higher derivatives of determinant related to the QNS. To that
extent our arguments below would apply to many of them, though for definiteness we will focus on
the Taylor series expansion method where successive higher order terms are needed to improve it
systematically.

Mostly staggered fermions are used in the investigations of QCD phase diagram. These do
not have a well defined flavour number or the UA(1) symmetry on the lattice. While these may
be attained in the continuum limit on large lattices, it is debatable as to how well the present days
lattice simulations perform from this perspective. Model considerations suggest that two light
quark flavour QCD with an anamoly contribution which decreases slowly with temperature at zero
chemical potential leads to a QCD critical point in the temperature-baryon density phase diagram.
Higher number of light flavours or a sharp drop in the anamoly contribution may lead only to a
first order transition line in the phase diagram. Domain wall quarks or the overlap quarks have the
same symmetries as the continuum quarks but do not have a unique local quark current, making it
difficult to define the chemical potential for them. There have been proposals in the literature with
their associated problems. We argue that the problem of definition of chemical potential generically
affects all types of fermions, and that demanding universality of the QNS leads us to a definition
valid for all types.

For simplicity, we shall consider the simplest case of naıve fermions as the arguments below
can be easily extended to all others with similar consequences. Recall that the naıvely discretized
fermionic action is

SF =
∑
x,x′

ψ̄(x)


4∑
µ=1

Dµ(x, x ′) + maδx,x′
 ψ(x ′),

where
Dµ(x, x ′) =

1
2
γµ

[
Uµ

x δx,x′−µ̂ −Uµ†
x′ δx,x′+µ̂

]
.

It clearly has a U(1) phase rotation symmetry. Under ψ ′ = exp (iα)ψ and ψ̄ ′ = ψ̄ exp (−iα), with
0 ≤ α < 2π and constant, it remains invariant. As usual, one can easily follow the canonical
method to write the corresponding current conservation equation,

∑
µ ∆µJlatµ = 0, and obtain from

it the conserved charge in the naturally point-split form. Switching on the gauge fields, Uµ(x), the
conserved quark/baryon charge in QCD is N =

∑
x ψ̄(x)γ4[U4

xψ(x + 4̂)+U4†
x−4̂

ψ(x − 4̂)]/2. Adding
the baryonic chemical potential to the action therefore amounts to weights f (aµ) = 1 + aµ and
g(aµ) = 1 − aµ to forward and backward time links respectively in the full lattice QCD action.
Even for the free case, ∀Uµ(x) = I, this action leads to µ-dependent a−2 divergences in the a → 0
limit in energy density ε , and quark number density n. In particular, one has

ε = c0a−4 + c1µ
2a−2 + c3µ

4 + c4µ
2T2 + c5T4 (1)

n = d0a−3 + d1µa−2 + d3µ
3 + d4µT2 + d5T3.

Subtracting off the vacuum contribution at T = 0 = µ, eliminates the leading divergence in
each case but the µ-dependent divergence persists. This has been, of course, known since long, and
proposals to eliminate these divergences also exist. Hasenfratz and Karsch [6] as well as Kogut et al.
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[7] proposed to modify the weights f and g to exp(±aµ) to obtain finite results while simultaneously
Bilić-Gavai [8] showed (1 ± aµ)/

√
(1 − a2µ2) also lead to finite results. Indeed, in general any

set of functions f , g, satisfying f (aµ) · g(aµ) = 1 with f (0) = f ′(0) = 1 suffices to eliminate the
µ-dependent divergence [9].

It is worth emphasizing that the analytical proof of elimination of divergences was provided
only for free quarks [6, 8, 9], and thus also for perturbation theory. Numerical computations had to
be performed to show that it worked for the non-perturbative interacting case as well [10].
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Figure 2: Continuum limit for quark number susceptibilities with different actions. A linear behaviour of
the data and convergence to a unique continuum limit indicates the absence of any divergence. Taken from
Ref. [10].

Figure 2 displays the results of [10] for the continuum limit of quark number susceptibilities
with different actions computed for µ = 0 at a constant temperature of 2Tc. Since χ ∼ ∂n/∂µ, it
too has a quadratic divergence which naturally is µ-independent. Furthermore, at fixed temperature
T−1 = Nt · a, the continuum limit of a → 0 is equivalent to Nt → ∞. The data in Figure 2 exhibit
a linear behaviour and converge to a unique limit to the expected result at that temperature. Since a
rising curve to infinity as 1/Nt → 0 would be the signal of a divergence, the absence of divergence
is demonstrated in a non-perturbative manner as well for all f (aµ) · g(aµ) = 1 choices of the weight
factors as the χ is the same for all of them.

One may naturally wonder why this type of divergence was not encountered in the continuum
theories. Specifically, one may attribute it to the latticization. A question then arises as to why,
and how, does lattice introduce this divergence. An argument was provided [6] in the early work,
stating that the divergence arises on the lattice due to the lack of a "formal" gauge symmetry. In the
continuum theory, the µ term in the action appears as if it is a 4th component of a constant gauge
field. The simple naıve choice for the weights does not respect such formal global gauge invariance
on the lattice while all the forms above where divergences are eliminated do have this formal gauge
symmetry.

f (aµ) · g(aµ) = 1⇔ F(aµ) = exp(ln f (aµ)),G(aµ) = exp(− ln f (aµ)). (2)

It is important to note that even this formal analogywith the global gauge transformation strictly
speaking needs an imaginary chemical potential and is thus invalid for the physically interesting
case of the real chemical potential. Not surprisingly, it turns out to be wrong as well: Latticization
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does not introduce divergence. It merely assists in spotting what exists in the continuum already
[11]. Techniques such as contour integrals in the continuum have an inbuilt way to eliminate
these divergences, either by subtraction or by a suitable regulator-based prescription. It has been
demonstrated [11] that a similar subtraction scheme can be used on the lattice to remove the divergent
contributions, leading to finite results in the a→ 0 limit also for the action with the linear chemical
potential.

3. Universal Or Unique?

As discussed above, there are three different lattice action for finite density QCD, including the
naıve one, for all of which divergences can be eliminated from the continuum limit result. A priori,
the multiplicity of lattice actions corresponding to the same continuum QCD action is a familiar
phenomenon. Indeed, the entire program of improvement of action, which aims to obtain better
results even for not so small a, relies on the concept of universality which assures the same universal
results for all physical quantities in the a→ 0 limit. As we will argue below, there are subtleties in
the case of finite density actions which raise the question posed in the heading of this section.

Recall that the three lattice actions for µ , 0 are characterised by the three different weight
factors f (µa)[g(µa)] for all the forward [backward] time-like links. Denoting them by L, E and S
for their linear, exponential and square root forms, the corresponding weights are given by

fL(µa) = 1 + µa , gL(µa) = 1 − µa (3)
fE (µa) = exp(µa) , gE (µa) = exp(−µa)

fS(µa) = (1 + µa)/
√

1 − µ2a2 , gS(µa) = (1 − µa)/
√

1 − µ2a2 .

Considering the classical continuum limit of the actions incorporating these weight factors, it
is easy to verify that all of them have the same form at O(µa). Indeed, these actions all differ in
terms starting O(µ2a2). Universality of physical results is assured if all these terms are irrelevant.
Alternatively, if these actions produce different results, one ought to worry whether these terms are
indeed irrelevant, and can thus be legitimately be added to the action at all. Assuming that they
are irrelevant leads to the following paradox. It has been shown that the L-action has divergences
mentioned earlier, which have to be subtracted by hand while the other two do not have them in
an apparent violation of universality. Furthermore, since the divergences do exist in the continuum
theory, as demonstrated in Ref. [11], one wonders how/whether they will reappear for the actions
with fE or fS as a → 0. As a next step to assess how universal the physical results from these
actions are let us examine [12] the quark number susceptibility at µ = 0 in some details in order to
understand this difference. It is given by

χ =
1

NtN3
s a2

[〈(
TrM−1M ′

)2
〉
+

〈
Tr

(
M−1M ′′ − M−1M ′M−1M ′

)〉]
, (4)

Here M is the quark matrix (inverse propagator) and M ′(M ′′) is its first(second) derivative with
respect to µ. We shall consider χ(µ = 0), and therefore M , M ′ & M ′′ above are evaluated at
µ = 0. None of the terms depends on a explicitly [SF (aµ) = ψ̄M(aµ)ψ]. All the terms inside the
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bracket are dimensionless, with the a2 factor in the denominator supplying the dimension of χ. In
the continuum limit of a → 0, all the terms must vanish at least as a2 for a nontrivial continuum
limit of χ. Of course, if any term vanishes as an, n ≥ 3, it will be irrelevant in the continuum limit
while n ≤ 1 would lead to a divergence. While comparing the three χ’s, it should be noted that M ′

is the same for all f ’s while M ′′ = 0 for fL and nonzero for others. Thus the presence of quadratic
divergence for the linear form can be attributed to the vanishing of its M ′′ term, implying that the
other two terms together have a0 as the leading behaviour. The exponential and square root form
have the same nonzero M ′′ at µ = 0, coming from the µ2a2 terms in them. Its presence precisely
cancels the a0 piece of the other two terms leading to a divergence-free result for χ, as has been
demonstrated for both the free theory(analytically) [6, 8, 9] and the quenched QCD (numerically)
[10]. Therefore the M ′′ term must also have a0, and it is ruled out that it vanishes faster than a2 for
any action. Hence, the difference in the results remains even in the continuum limit, in spite of M ′′

arising from an apparent irrelevant term in the action, namely O(µ2a2) term.
It is clear that this problem of non-universal results worsens as one computes higher order

fluctuations. Each successive order will have terms with the corresponding higher derivative
of M , which in turn means higher derivatives of f (since g = 1/ f is assumed to cancel the
divergences). While f ′′E (0) = f ′′S (0), it is easy to show that f ′′′E (0) = f ′′′′E (0) = 1 but f ′′′S (0) = 3.
Moreover, f ′′′′S (0) = 9 [12]. Indeed, f nE (0) , f n

S
(0) for all n > 2. Let us recall that the third

and fourth order baryon number susceptibilities, which are themselves related to various quark
number susceptibilities up to the corresponding order, are crucially used in locating [13] the QCD
critical point, both theoretically and experimentally. In fact, one hopes to improve upon the current
results by incorporating as many higher orders as possible. Furthermore, the sixth order baryonic
fluctuations have been advocated as signature for the O(4) criticality [5] which too will need up to
sixth order of the quark number susceptibilities.

As we argued above, the theoretical results for all these fluctuations depend onwhich f one uses
irrespective of the choice to eliminate the divergence by the f ·g = 1 condition or by subtraction. One
has the embarrassing situation of having as many predictions for physically measurable quantities
as the number of f ! Thus the desire to eliminate the divergences by the f · g = 1 condition does
not appear to be in accord with universality.

Trying to understand the reasons beneath this violation of universality, we note that µ, being
dimensionful, one has to ensure that it has a fixed value in physical units as a → 0. Recall that
in order to achieve the continuum limit at a fixed temperature T = 1/Nta in physical units one
needs to take a → 0 along with Nt → ∞. Thus not only a but Ta = 1/Nt are two separate scales
which need to be tuned appropriately. Similarly, one will have to treat a and µa as separate scales
which will have to be approach zero by themselves such that µ is held the same in physical units.
At the purely classical level, where one examines the approach of the lattice action to that in the
continuum, the additional O(µ2a2) term can be easily seen to vanish iff a→ 0 limit is the same as
µa → 0. At the quantum expectation level, on the other hand, we expect µ/T to be held fixed as
a→ 0, making µa→ 0 a separate limit. The nth derivatives of P will be, by definition, sensitive to
the corresponding µnan terms in P for n ≥ 2, exposing their relevant nature in the corresponding
susceptibilities, and consequently to pressure. It needs to be emphasized that while the entire
effort to modify the fL and gL from their natural linear prescription, which can be derived from an
underlying conserved current on the lattice, was motivated by the question of divergences in eq,(2),
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the non-universality pointed out above has nothing to do with the diverging terms. It is primarily
related to the question of adding term to all orders in µa with the assumption/hope that universality
will make their contribution irrelevant. The elimination of divergence is, in fact, a proof that it is
not so, i.e., µa being a separate scale which needs to be tuned in the continuum limit these terms are
relevant. We advocate that it is more advisable to use the unique fL and gL in lattice computations
than to sacrifice universality.

Changing from the linear form to either the exponential or the square root form leads to a
further problems. The actions with either fE or with fS has no conserved charge anymore [12].
Following the canonical method to derive current conservation for actions with or without chemical
potential terms in the continuum, or on the lattice, it is easy to prove this. Both in the continuum
and for the fL ,gL lattice action, the same current conservation equation results[12] for µ , 0 as for
µ = 0, and thus the conserved charge is unaffected by µ , 0 terms, as it must. On the other hand,
for fE and fS-actions with µ , 0 one gets a conserved charge that itself depends on µ ! As a direct
consequence, Z ,

∑
n znZC

n on the lattice for these two actions. This is possible only if the a→ 0
and µa → 0 limits are identical for all µ. This implies that one cannot define an exact canonical
partition function on lattice from the Z defined this way for the actions employing the exponential
or the square root forms. Only for the linear µ-case one has an exactly conserved charge on the
lattice, and thus an exact canonical partition function Z =

∑
n znZC

n on the lattice.

Figure 3: Illustration of the weight factors in the t-µ plane (µ =1,2,3).

The f · g = 1 condition introduces differences in the µ-dependence of the partition function
Z which again seem to survive the a → 0 continuum limit. Given the fact only timelike links
acquire a nontrivial weight factor at µ , 0, it is obvious that any µ-dependence for Z arises solely
due to loops with time-like links, and hence is ∝ ( f · g)l, where l is the number of forward or
backward links in a Wilson loop. Figure 3 illustrates this for l = 1, the timelike plaquette. Since
fL · gL = 1 − µ2a2, quark loops of all sizes and types contribute to the µa dependence for the
Z . This is similar to the expectation in the continuum as well where time-like Wilson loops of all
sizes would contribute. However, only quark loops winding around the T direction contribute to
µ dependence for the other two cases since f · g = 1. The µ-dependence thus arises from only
a topologically distinct class of Wilson lines, raising the same universality violation issue again.
Of course, only explicit calculations may show what is the fate of the topologically trivial Wilson
loops of all sizes and whether they somehow add up to a µ-independent expression. At least, this
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apparent paradox suggests that it is crucial to check if universality is obeyed for all three actions
perhaps by considering other theories which do not have the sign problem for nonzero µ.

4. Summary

Prescriptions to modify weights for nonzero chemical potential in the lattice actions which
satisfy f · g = 1, where f (µa)[g(µa)] is the weight factor for a forward [backward] timelike gauge
link, such as the popular exponential form, violate universality for quark number susceptibilities.
As their order increases, further non-universal results arise depending on the exponential[6, 7] or
the square root form [8]. Employing them leads to f -dependent results even in the continuum limit
for fluctuations measurable in, and of great interest to, heavy ion collision experiments.

µ-dependent divergences, for elimination of which the condition was invented, are not unique
to lattice regularization. Indeed, lattice only reproduces faithfully what exists in the continuum
field theory. Following the example of continuum field theory, one can subtract the free theory
divergences by hand, and this process has been shown to suffice even nonperturbatively [11]. The
linear form preserves the quark/baryonic current conservation on the lattice, and retains the same
conserved quark/baryon number for all µ. On the other hand, the conserved charge depends on µa
for the other two. As a result the canonical partition function can meaningfully be defined on the
lattice exactly only for the linear form.
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