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Quenched QCD at zero baryonic chemical potential undergoes a first-order deconfinement phase
transition at a critical temperature )2 , which is related to the spontaneous breaking of the global
center symmetry. Including heavy, dynamical quarks breaks the center symmetry explicitly and
weakens the first-order phase transition. For decreasing quark masses the first-order phase transi-
tion turns into a smooth crossover at a /2-critical point. The critical quark mass corresponding to
this point has been examined with #f = 2 Wilson fermions for several #g in a recent study within
our group. For comparison, we also locate the critical point with #f = 2 staggered fermions on
#g = 8 lattices. For this purpose we perform Monte Carlo simulations for several quark mass
values and various aspect ratios in order to extrapolate to the thermodynamic limit. The critical
mass is obtained by fitting to a finite size scaling formula of the kurtosis of the Polyakov loop.
Our results indicate large discretization effects, requiring simulations on lattices with #g > 8.
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1. Introduction

The nature of the thermal QCD transition at zero baryonic chemical potential has been found
to be an analytic crossover for #f = 2 + 1 quark flavors with physical mass values [1]. The sign
problem prohibits the exploration of the QCD phase diagram at finite baryonic chemical potentials
`� with lattice QCD. However, investigating the nature of the thermal QCD transition at `� = 0
for varying quark mass values with lattice QCD gives valuable insights into the phase structure
of QCD. The nature of the thermal QCD transition at `� = 0 is visualized in the Columbia plot
as a function of the degenerate up- and down-quark mass value <D,3 and the strange quark mass
value <B. First-order phase transition regions with a second-order boundary have been found with
unimproved fermion discretizations on coarse lattices, for both heavy and light quark masses. In
contrast to the light quark mass regime, where strong indications exist that the first order region
vanishes towards the continuum limit [2], the first-order region in the heavymass regime is known to
persist from investigations of pure gauge theory [3]. A recent study with #f = 2 unimprovedWilson
fermions even shows an enlargement of the first-order region when approaching the continuum limit
[4].

The deconfinement transition in the heavy quark mass regime, which is subject of this work, is
related to the spontaneous breaking of the /3 center symmetry. In the limit of infinite quark mass
values, QCD is invariant under /3 center symmetry transformations, leading to a first-order phase
transition at the transition temperature )2 . The inclusion of large but finite quark masses breaks the
center symmetry explicitly. Decreasing the quark masses weakens the first-order phase transition
until the deconfinement transition turns into an analytic crossover at a /2 second-order boundary.
This /2-critical point has been investigated for #f = 2 quark flavors and 3 different temporal lattice
extents #g employing the Wilson fermion action [4]. For comparison, the goal is to locate the same
/2-critical point employing the unimproved staggered fermion action. As a first step, we present
results for #g = 8 in this work.

The motivation to study the thermal QCD transition far from the physical quark mass values is
to provide a first-principles benchmark for effective theories, that are not limited by the sign problem
and can access the `� ≠ 0 region. These effective theories include effective lattice theories obtained
from the hopping parameter expansion [5–7] and effective Polyakov loop theories in the continuum
[8, 9]. Furthermore, the /2-critical point is of interest, as it is the point where the latent heat of
the first-order deconfinement phase transition vanishes. Hence, the dynamics of the deconfinement
transition relates the value of the critical quark mass and the latent heat such that non-perturbative
investigations allow valuable insights in this parameter region. For pure gauge theory with infinite
quark mass values, the latent heat has already been calculated [10].

2. Simulation Details

The Monte Carlo importance sampling simulations are preformed using the standard Wilson
gauge action
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with the inverse gauge coupling V = 6
62 , the plaquette %`a (=) depending on the lattice sites = and

directions ` and a. For the fermions, the staggered fermion action
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is employed, where 0 is the lattice spacing and k̄ and k are the fermion fields with mass 0<.
The gauge links are given by *` (=) and [` (=) is the staggered sign function. The inverse gauge
coupling V controls the lattice spacing 0(V) and the temperature ) = 1

0 (V)#g , where #g = 8 is the
number of lattice points in temporal direction. The number of lattice points in spatial direction #f
defines the size of the system ! = 0(V)#f , for which five aspect ratios !) = #f/#g ∈ [4, 8] were
simulated. Simulations were run for two or three values of V around the (pseudo-)critical V2 at
which the transition takes place. After a thermalization process, four independent Markov chains
are produced for each V value. In order to locate the critical quark mass <2 at the /2-critical point,
simulations were run for the mass values 0< ∈ {0.35, 0.55, 0.75, 0.95, 1.15}.

The order parameter associated with the deconfinement transition is the expectation value of
the Polyakov loop !, averaged over the spatial lattice volume, with

! =
1
#3
f

∑
n

1
3

Tr

[
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=0=0

*0(=0, n)
]
. (3)

The product is performed over all temporal gauge links at spatial lattice site n, closing through the
periodic boundary in temporal direction.

After 5000 trajectories of thermalization, an amount of 200k to 300k trajectories was accumu-
lated for eachMarkov chain, which sums up to a maximum of 1.2M trajectories for one V value. The
configurations are generated by the RHMC algorithm, where the acceptance rate is kept at ∼ 85%.
The employed lattice QCD code is the Open-CL based code CL2QCD [11], also publicly available
[12], which is run on GPUs on the L-CSC cluster at GSI in Darmstadt, Germany. To manage the
simulations the bash tool BaHaMAS was used, which allows to submit and monitor huge amounts of
simulations efficiently [13].

3. Analysis of the Deconfinement Transition

We use the standardized moments skewness, �3, and kurtosis, �4, of the norm of the Polyakov
loop to localize the deconfinement transition and determine its order. The =-th standardizedmoment
of the expectation value of the absolute value of the Polyakov loop |! | with mean value |! | is given
by

�= =

〈(
|! | − |! |

)=〉
〈(
|! | − |! |

)2
〉 =

2
. (4)

The skewness measures the asymmetry of the distribution and serves to locate the (pseudo-)critical
V2 using the condition �3(V2) = 0. The kurtosis of the distribution at V2 gives information about
the type of the transition, which assume specific values in the infinite volume limit (see Table 1).
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Transition type 1. Order /2 (Ising 3D) [14] Crossover
H4(#c) 1 1.604(1) 3

Table 1: Infinite volume kurtosis values of the order parameter for selected transitions.
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Figure 1: Exemplary analysis and reweighting of �3 and �4 of |! | for 0< = 0.55 and #f = 56. The
points on the left are shifted horizontally around the central value for readability. The upper row shows the
skewness, the lower row shows the kurtosis. The left column shows the analysis of the independent Markov
chains. The analysis of the merged chains is shown on the right in red, as well as the reweighted data points.

The sampling of the simulated V values is too coarse, such that V2 cannot be extracted directly.
Interpolating the skewness and the kurtosis in between the simulated V values using the multiple
histogrammethod [15] leads to good estimates of V2 and �4(V2). This analysis strategy is visualized
in Figure 1 for the parameters 0< = 0.55 and #f = 56.

The set of kurtosis values at V2 obtained from this analysis is volume dependent and a finite
size scaling analysis has to be performed. The finite size scaling formula for the kurtosis of |! |,
which is in general a mixture of an energy- and magnetic-like observable, is

�4(#f , V2 , 0<) =
(
� + �G + O

(
G2

))
·
(
1 + �# HC−Hℎf + O

(
#

2(HC−Hℎ)
f

))
, (5)

with the scaling variable G =
(

1
0<
− 1
0<2

)
#

1/a
f [16]. The critical exponents HC = 1/a = 1.5870(10)

and Hℎ = 2.4818(3) are known for the /2 universality class [17]. �, �, � are undetermined constants
from the Taylor expansions and 0<2 is the value of the /2-critical mass in lattice units. Based on
formula (5), two fit ansätze can be derived. The general one includes a correction term

�4(#f , 0<) =
(
1.604 + 11

(
1
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− 1
0<2

)
#

1/a
f

)
·
(
1 + 2# HC−Hℎf

)
, (6)

whereas for sufficiently large volumes #f the correction term can be neglected,

�4(#f , 0<) = 1.604 + 11

(
1
0<
− 1
0<2

)
#

1/a
f . (7)
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Figure 2: Kurtosis fits without and with correction term. The kurtosis points are shifted horizontally around
the central value for readability. (a) shows a linear fit without correction (see formula (7)), where all points
from #f = 32 and one point from #f = 40 are excluded. (b) shows a linear fit with correction (see formula
(6)), where all points are included. The value of the critical quark mass is indicated by the black line and its
error by the gray area.

By fitting to these fit formulas, the critical mass 0<2 can be extracted as a fit parameter besides the
other fit parameters 11 and 2.

4. Numerical Results

Having obtained one kurtosis value at V2 for each simulated combination of #f and 0< as
described in the previous section, both fit formulas (6) and (7) are fitted to this set of data. A good fit
without correction is obtained by excluding the kurtosis points for the smallest volume #f = 32 and
one point from #f = 40. The result is shown in Figure 2 (a). By applying the fit with correction,
all simulated kurtosis points can be included and a better fit is obtained. The corresponding plot is
shown in Figure 2 (b). The numerical fit results for both fits are shown in Table 2.

Comparing the plots of both fits in Figure 2, the correction term shifts the pairwise crossing
point of the kurtosis lines up. This leads to a better fit, which is expressed in the better j2

ndf and
fit quality parameter & in Table 2. Especially the kurtosis points for the smallest mass value are
hit much better by the fit function with correction. The results for the critical mass 0<2 are not
compatible with each other, indicating a still large finite size effect, even if the smallest volume is
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<2 11 2 ndf j2
ndf &

fit without correction (a) 0.85(5) 0.00079(9) - 13 1.13 32.4%
fit with correction (b) 0.61(5) 0.00063(7) 3.8(6) 17 1.03 42.1%

Table 2: Fit results for the two fits displayed in Figure 2. <2 , 11, 2 are fit parameters given with their errors
in parentheses. ndf is the number of degrees of freedom and j2

ndf is the j
2 per number of degrees of freedom.

The quality of the fit is quantified by the &-parameter.

0< V2 0<c 0 {fm} <c {GeV} )2 {"4+}
0.55 5.9821 1.72039(7) 0.0888(10) 3.82(4) 278(3)
0.75 6.0129 1.98121(7) 0.0872(9) 4.48(5) 283(3)

Table 3: Results from pion mass measurement and scale setting.

excluded from the fit. This statement is supported by the result of the fits with correction term, which
consecutively exclude the smaller volumes. The dependence on the correction term parameter 2
persists, as it does not become compatible with zero when only including the largest volumes.

Regarding the considerations from above, the fit with correction term is chosen to be the best
fit and the final result for the critical mass of the /2 critical point on #g = 8 lattices is

0<2 = 0.61(5). (8)

The pion masses for the simulated quark masses are calculated at V2 on #g = 32 and #B = 16
lattices. Furthermore, the scale is set using the F0-scale [18] based on the Wilson flow [19]. The
results are shown in Table 3 for the two neighboring simulated masses around the critical mass. The
pion mass in lattice units, which is larger than 1, contains significant cutoff effects, as the lattice is
not able to resolve the pion represented by its Compton wavelength 1/<c .

#g <
/2
c {GeV}

6 5.01(5)
8 4.51(5)
10 4.39(5)

Table 4: Values of the critical pseudo
scalarmesonmass</2

c for various#g
from Wilson fermions [4].

For comparison, the results fromWilson fermions for three
different #g = 6, 8, 10 are shown in Table 4. The determination
of the critical pion mass for the critical quark mass value in
equation (8) for staggered fermions on #g = 8 lattices has not
yet been performed, as it is to early to use this value for a
quantitative continuum extrapolation. However, the measured
pion masses in Table 3 are roughly consistent with the results
from Wilson fermions on #g = 8 lattices.

5. Conclusions

This work presents a first step to determine the heavy /2-critical quark mass at zero chemical
potential for #f = 2 flavors with staggered fermions. The analysis of the fits with and without
the correction term has shown a significant dependence on the correction term for obtaining good
fits. To avoid the use of the correction term, simulations on much larger spatial lattices would be
needed. Currently, this is not feasible as the computing time per trajectory would grow as well as
the autocorrelation time of the observables due to the critical slowing down. The fact that only one
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#g has been fully simulated up to this point does not allow any conclusions about the expected shift
of the critical quark mass towards smaller values for increasing #g . The large values of the pion
masses in lattice units also imply large discretization effects and the necessity to simulate on finer
lattices.
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