
P
o
S
(
L
A
T
T
I
C
E
2
0
2
1
)
4
8
6

Prospects for Lattice QFTs on Curved Riemann Manifolds

Richard C. Brower,a,∗ Casey E. Berger,b George T. Fleming,c Andrew D. Gasbarro,d

Evan K. Owen,a Timothy G. Raben,e Chung-I Tan f and Evan S. Weinbergg

aBoston University, Boston MA 02215, USA
bSmith College, Northampton, MA 01063, USA
cYale University, Sloane Laboratory, New Haven, CT 06520, USA
dAEC Institute for Theoretical Physics, Universität Bern, 3012 Bern, Switzerland
eMichigan State University, East Lansing, MI 48824, USA
f Brown University, Providence, Rhode Island 02912, USA
gNVIDIA Corporation, Santa Clara, California 95050, USA
E-mail: brower@bu.edu, cberger@smith.edu, george.fleming@yale.edu,
andrewgasbarro@gmail.com, ekowen@bu.edu, rabentim@msu.edu,

chung-i_tan@brown.edu, eweinberg@nvidia.com

Conformal or near conformal Quantum Field Theories QFT) would benefit from a rigorous
non-perturbative lattice formulation beyond the flat Euclidean space, Rd . Although all UV
completeQFT are generally acknowledged to be perturbatively renormalizable on smoothRiemann
manifolds, non-perturbative realization on simplicial lattices (triangulation) encounter difficulties
as the UV cut-off is removed. We review the Quantum Finite Element (QFE) method that
combines classical Finite Element with new quantum counter terms designed to address this.
The construction for maximally symmetric spaces (Sd , R × Sd−1 and AdSd+1) is outlined with
numerical tests on R × S2 and a description of theoretical and algorithmic challenges for d = 3, 4
QFTs.
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1. Introduction

Lattice Field Theory (LFT) on regular, most often hypercubic, lattices has proven to be a
powerful method to extract ab initio predictions of non-perturbative field theory – most notably
for Quantum Chromodynamics (QCD). The numerical methods are generally implemented on a
flat toroidal Euclidean lattice with fixed lattice spacing, a, providing the UV cut-off Λ = π/a.
The discrete rotation and translation symmetries form a subgroup of the Poincare group sufficient
to implement Wilsonian renormalization of quantum field theory (QFT) at a second order phase
boundarywith aminimumof relevant tuning parameters. Indeed formany perturbative renormalized
field theories, QCD in particular, the lattice provides the only definition of the full non-perturbative
QFT.

The goal of the Quantum Finite Elements (QFE) is to extend lattice field theory to Riemann
manifolds beyond flat space. While this is a technically difficult task, such an extension is plausible
based on the literature [1–3] which generalizes the renormalization of the Feynman perturbation
expansion to smooth Euclidean Riemann manifolds. The challenge is to find a rigorous non-
perturbative lattice framework. Beyond this theoretical goal, there are important aspects of non-
perturbative quantum field theories that are best understood on curved space-time manifolds.

One target applications is to Conformal Field Theory (CFT) mapped by Weyl transform from
Euclidean Rd to the Riemann sphere, Sd, where the free energy gives direct access to the central
charge [4]. Another CFT application is radial quantization on a cylinder [5], R×Sd−1, where “time”
translations are generated by the dilatation operator, giving direct access to conformal dimensions
and the conformal partial wave expansion [6]. In addition small mass deformations in multi-flavor
gauge theories give weakly broken CFTs to probe possible new physics beyond the standard model
(BSM) with composite Higgs and/or dark matter. Finally lattices for the AdSd+1 manifold can
provide new framework [7, 8] to study the AdS/CFT conjectures [9] as well as non-perturbative
aspects of quantum gravity.

There are two steps to the QFE lattice construction. First a sequence of discrete approximations
to both the base Riemann manifold and the quantum field is introduced designed to converge to
the classical field theory in the continuum limit. This talk focuses on this first step which is
largely solved by leveraging techniques from the finite element method (FEM) and discrete exterior
calculus (DEC). We have extended these methods sufficient to implement the lattice action with
interacting scalar, non-Abelian gauge and Dirac fermions fields. A careful refinement for a sequence
of simplicial complexes (2D triangles, 2D tetrahedrons, etc.), with its Voronoi dual, appears to
guarantee convergence to all solution to the continuum Euler Lagrange equation of motion (EOM).

The second and more difficult step is unique to quantum field theory. Due to the local variation
in the ultraviolet cut-off (e.g lattice spacing) on a simplicial complex, the QFE prescription must
include the addition of local counter terms to compensate to this local scheme dependence in
order converge to the quantum field theory on the continuum manifold as the cut-off is removed 1.
By evaluating the UV divergent lattice perturbation diagrams we believe in principle perturbative

1There is possible alternative solution by replacing our fixed sequence of maximally smooth simplicial lattices by a
quenched randomized ensemble constrained on average to the target manifold. We prefer to avoid the complexity of a
double Monte Carlo sampling in both metric (base) and field (fiber) space, unless and until we wishes to explore the
dynamical interaction with quantum gravity in the spirit of Regge calculus.
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counter terms are sufficient for renormalizable QFT. At present our numerical tests are restricted to
φ4 theory on S2 for the 2D Ising CFT and on R × S2 for the 3D Ising model. They are examples of
maximally symmetric spaces so that UV divergences are uniform. The construction of counter terms
is an ongoing project both for the existence of local QFE counter terms and efficient algorithms to
define them. This is discussed briefly in the companion article by Evan Owen [10].

2. Classical Field Theory on Riemann Manifold

At the classical level we introduce a sequence of d-dimensional simplicial Delaunay complex
Cd and the circumcenter dual Voronoi complex C∗. Here we give a rough description of this elegant
and crucial Finite Element Method (FEM) referring for details to our earlier QFE publications [11–
13]. It starts with introducing a piece-wise linear interpolation of the metric gµν(x) field identifying
each site i with a co-ordinate xµi and edge lengths li j = |xi−xi |+O(a2). This guarantees the topology
of the complex conforms the Riemann manifold upon refinement approaching the continuummetric
in zero lattice spacing a limit to O(a2) . Unlike Regge calculus (RC) and random lattice methods,
we do not average over an ensemble of near by complexes.

A d-dimensional simplicial complex Cd is built out of a sequence elementary n-dimensional
cells σn(i0, i1, · · · in) (sites, edges, triangle, tetrahedrons etc.) for n = 0,1, .., d with volume |σn |

and associated n − d dimensional dual polytopes σ∗n. Orthogonality to the dual lattice C∗
d
at

circumcenters implies the volume of the hybrid cells

|σn ∧ σ
∗
n | =

n!(d − n)!
d!

|σn | |σ
∗
n | . (1)

is a proper tessellation. It is crucial to realize this simplicial complex and its dual preserve the
algebraic structure of the continuum differential geometry under the banner of Category Theory.
On this lattice scaffolding, we next introduce scalar (on sites), vector (on links) tensor (on triangles)
and Dirac fields which for example obey discrete analogues of stokes theorem relating exterior
derivatives to boundary forms etc.

σ0σ0

σ0
*σ0
*

σ2σ2

σ1∧σ1
*σ1∧σ1
* σ1

*σ1
*

σ1σ1

Figure 1: On the left a 2D simplicial complex on the base manifold and on the right the linear finite element
basis.
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The simplest example is a single scalar field illustrated by φ4 theory. The FEM rule on 2D
triangulated planes is well known. For example classical FEM action for φ4 theory on R × S2 has
the FEM action in physical units relative to the radius, R, of the sphere,

SFEM =
at
2

[ ∑
y∈〈 x,y〉

l∗xy
lxy
(φt ,x − φt ,y)

2 +

√
gx

4R2 φ
2
t ,x +

√
gx[
(φt ,x − φt+1,x)

2

a2
t

+ m2
0φ

2
t ,x + λ0φ

4
t ,x]

]
,

with the Einstein summation convention for x = 1,2, · · · ,N for sites on each sphere and t =
1,2, · · · , Lt along the length of the cylinder. Relative to Eq.1 on the 2d sphere we have used the
notation: √gx = |σ∗0 (x)|, lxy = |σ1(xy)| and l∗xy = |σ

∗
1 (xy)|. Note that the weights for FEM kinetic

term is the ratio of the length of the dual link connecting circumcenter on the dual lattice and the
triangle length: 〈 x, y〉 links l∗xy/lxy . In 2d this is equivalent to piecewise linear finite elements,
illustrated in Fig.1. A some what informal summary of these lattice fields are

J = 0 Sscalar =
1
2

∑
〈 i, j 〉

V∗i j
l2
i j

(φi − φ j)
2 , V∗i j = |σ

∗
1 (i j) ∧ σ1(i j)|

J = 1/2 SWilson =
1
2

∑
〈 i, j 〉

V∗i j
li j
(ψ̄i ê

j(i)
a γaΩi jψj − ψ̄jΩji ê

i(j)
a γaψj) +Wilson Term

J = 1 Sgauge =
1

2g2Nc

∑
4i jk

V∗
i jk

A2
i jk

Tr[2 −U4i jk −U†4i jk ]

FFdual SFF̃ =
iθ
Nc

∑
〈 nijkl〉

V∗
nijkl

Anij Ankl
ε i jklTr[U4ni jU4nkl ] (2)

where we define li j = |σ1(i j)| and Ai jk = |σ2(i j k)| on C, and the hybrid volumes, V∗i j = |σ1(i j) ∧
σ∗1 (i j)|, V∗

i jk
= |σ2(i j k) ∧ σ∗2 (i j k)| and V∗

nijkl
= |σ4(ni jkl)|. Together these components allows

the construction at the classical level field theories with scalars, Fermions and gauge theories. For
example as we note in Ref. [12], the scalar kinetic term is a DEC representation of the Beltrami
Laplace operator: ∗d ∗ dφ →

√
g∂µg

µν
√
∂νφ(x). The transform between lattice and dual lattice

is the simplicial Hodge star operator ∗. However we note for d > 2 this is not in fact given by
piece-wise liner elements but follows the elegant DEC method, which in flat space was formulated
in a classic paper by by Christ, Friedberg and Lee[14] for scalars and non-Abelian gauge fields.

On curved space the Fermion field is more subtle. The Kahler Dirac fermion (or it gauged form
called staggered fermions) can be implemented by DEC but the Wilson lattice Dirac field required
a novel solution given in Ref. [11]. In continuum the Dirac field action is

S =
1
2

∫
ddx
√
gψ̄(x)[eµ(x)(∂µ −

i
4
ωµ(x))]ψ(x) (3)

where the verbine eµ(x) = eµa(x)γa relates to a local co-ordinate on the tangent plane at x to
the spin direction ωµ(x) ≡ ωab

µ σab for the covariant derivative between tangent planes. The key
problem is the proper introduction of lattice verbein on tangent planes at each site and lattice spin
connection. In Eq. 2 for SWilson , e j(i) is the lattice verbein at site i on link connecting to j and Ωi j

is the lattice spin connection for the Riemann curvature. They satisfy a simplicial Tetrad identity,
e j(i)
a γaΩi j + Ωji ê

i(j)
a γa = 0, which guarantees gauge invariance for co-ordinate rotation on each
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tangent plane – perfect analogue of the Wilson Lattice gauge links Ui j . Indeed coupling to gauge
links is accomplished by the substitution: Ωi j → Ωi jUi j . The addition of the Wilson term and the
application this Wilson kernel to domain wall fermions is straight forward.

3. Test Case of 3D φ4 theory

Recently QFE has been applied [13] to the 3D critical φ4 CFT on R × S2 and tested against
accurate results form the conformal bootstrap [15]. One must add to the classical FEM action above
in Eq.2 a counter term defined earlier in Ref. [12] for the linear divergent one loop term and the
logarithmically divergent two loop term.
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Figure 2: On the left, the Binder cumulant tuning to the critical surface in mass µ2
0 = −m2

0 at fixed λ0 = 0.1.
On the right, the Monte Carlo data from Ref. [13] for 3D φ4 on R × S2. The plot shows the importance of
including the Ricci term to rapidly converge to the continuum bootstrap [15] value for ∆σ = 0.5181 at zero
lattice spacing (a = 0).

Surprisingly it was discovered that rapid convergence to the continuum required the inclusion
of the Ricci curvature term as illustrated in Fig. 2 . While this term is technically irrelevant on
the critical surface, it is very important for high precision convergence to the continuum value
(∆σ = 0.5181) given by the bootstrap [15]. Also as discussed in the presentation by Evan
Owen [10], we have varied the bare coupling and found that the counter terms may have significant
non-perturbative corrections. While these corrections might be useful to improve the convergence
to the continuum, we note that they are not required. The proper limit to the continuum field theory
is to hold the dimensional renormalized coupling fixed: λR = O(λ0/a) approaching the critical
surface at mR = O(m0/a). Consequently in the continuum limit, λ0 → 0 and perturbative counter
terms are sufficient.

4. Future direction and Challenges.

While the basic premise of QFE lattice theory seems to be working, there is much more to do to
verify this and develop methods for relativistic QFT and bulkAdSd+1 to boundaryR×Sd CFTs for d
= 3 and 4. We are pursuing this step by step. Our next target is to introduce the simplicial geometry
on S3 to repeat the 3D Ising model on Riemann sphere [16] and to study 4d gauge theories onR×S3.
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There are two barriers to overcome to go to 4d. First the perturbative construction of counter terms,
while likely feasible in principle, does require considerable analytical and computational effort,
particularly when including fermions. Next, and equally challenging, is to construct sufficiently
efficient parallel Monte Carlo codes. However, it should be noted that the design of simplicial
lattices for QFE these applications has intentionally focused on highly regular tessellations of a
few maximally symmetric manifolds that at the local level share the regularity found in hypercubic
discretization of Rd. For example as illustrated in Fig.3 for S2 starting from the icosahedron the
refinement data structure on the surface is embedded in square and cubic lattice respectively. A
similar strategy is being pursued starting for S3 refining the remarkably similar hexacosichoron
composed of 600 hundred regular tetrahedrons the unit S3. Both have few domains (20 and 600
respectively) friendly to typical data parallel high performance lattice codes. continuum.

Figure 3: On the left, the Icosahedron is refine with 20 faces into a triangular graph allowing for simple data
parallel domains in application to S2 and R × S2. On the right, the construction of the metric for simplicial
manifold of the sphere, S2, is given by projecting equilateral triangular refinements of an icosahedron onto
the surface of a unit sphere.

In principle the full array of sophisticated multiscale solvers and Hybrid Monte Carlo (HMC)
algorithms should sit in a higher level opaque software layer with little explicit reference to the new
simplicial data structures of the base lattice. The hope is that this will enable the bulk of the data
parallel software components of Exascale QCD to be re-factored for the QFE applications to 4D
Gauge theories of interest to the BSM studies. Not an easy task but one that appears feasible.
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