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Using an (* (3)-flavour symmetry breaking expansion between the strange and light quarkmasses,
we determine how this constrains the extrapolation of baryon octet matrix elements and form
factors. In particular we can construct certain combinations, which fan out from the symmetric
point (when all the quarkmasses are degenerate) to the point where the light and strange quarks take
their physical values. As a further example we consider the vector amplitude at zero momentum
transfer for flavour changing currents.
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1. Introduction and background

Understanding the pattern of flavour symmetry breaking and mixing, and the origin of CP
violation, remains one of the outstanding problems in particle physics. Questions to be answered
include (i) What determines the observed pattern of quark and lepton mass matrices and (ii) Are
there other sources of flavour symmetry breaking? In [1, 2] we have outlined a programme to
systematically investigate the pattern of flavour symmetry breaking for QCD with three quark
flavours. The programme has been successfully applied to meson and baryon masses involving up,
down and strange quarks and has been extended to include QED effects [4, 5]. This article will
extend the investigation to include baryon octet matrix elements as reported in [3]. (In particular
the baryon octet is sketched in the LH panel of Fig. 1.)
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Figure 1: Left panel: The baryon octet in the �3–. plane. Right panel: The path from the (* (3)-flavour
symmetry line to the physical quark mass (denoted by a star). The axes for the renormalised quarks are
non-orthogonal which depicts the situation for non-chiral actions, such as clover-Wilson fermions, [2].

The QCDSF strategy applied mainly to 2 + 1 simulations (i.e. <̄D = <3 ≡ <;) is to note that
while there are many paths to approach the physical point, it is particularly favourable to extrapolate
from a point on the (* (3)-flavour symmetry line, where all the quark masses are the same, to the
physical point (<̄0, <̄0) −→ (<∗; , <

∗
B) keeping the singlet quark mass <̄ ≡ (2<; + <B)/3 constant,

as illustrated in the RH panel of Fig. 1. This path is called the ‘unitary line’ as we expand in both
sea and valence quarks.

Defining X<@ = <@ − <̄ as the expansion paremter about the (* (3)-flavour symmetric point
X<@ = 0 then we find Taylor expansions which at low orders in X<; have constraints between the
various octet masses. For example for the baryon octet we have

"# = "0 + 3�1X<; + . . .
"Λ = "0 + 3�2X<; + . . .
"Σ = "0 − 3�2X<; + . . .
"Ξ = "0 − 3(�1 − �2)X<; + . . . . (1)

This expansion is known up to and including X<3
;
terms. Thus plotting the masses against X<;,

they fan out from the point X<; = 0. A further consequence is that singlet terms, such as
-# = ("# +"Σ +"Ξ)/3 = "0 +$ (X<2

;
) have no$ (X<;) terms. We shall find similar behaviour

for the matrix elements.
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Index Baryon (�) Meson (�) Current (�F)

1 =  0 3̄WB

2 ?  + D̄WB

3 Σ− c− 3̄WD

4 Σ0 c0 1√
2

(
D̄WD − 3̄W3

)
5 Λ0 [ 1√

6

(
D̄WD + 3̄W3 − 2B̄WB

)
6 Σ+ c+ D̄W3

7 Ξ−  − B̄WD

8 Ξ0  ̄0 B̄W3

0 [′ 1√
3

(
D̄WD + 3̄W3 + B̄WB

)
Table 1: Our numbering and conventions for the generalised currents. For example, �3 = Σ

−, �3 = c
−,

��3 ≡ � c− = 3̄WD. We use the convention that current (i.e. operator) numbered by 8 has the same effect as
absorbing a meson with the index 8. W represents an arbitrary Dirac matrix.

2. Matrix element expansions

We now develop similar expansions for matrix elements given by

〈�8 |��9 |�:〉 ≡ ��̄8�9�:
, (2)

where our conventions are given in Table 1 for the possible octet states, 8 = 1, . . . , 8 and the singlet
state, labelled by 8 = 0 (which is considered separately). As we are primarily concerned with
the flavour structure of bilinear operators, we use the corresponding meson name for the flavour
structure of the bilinear quark currents. So for example the 8 = 5 current is given by the flavour
matrix �[ = diag(1, 1,−2)/

√
6. We shall use the convention that the current 8 has the same effect

as absorbing a meson with the same index. As an example, we note that absorbing a c+ annihilates
one 3 quark and creates a D quark. That is � c+ |0〉 ∝ |c+〉. When 8 ≠ : we have transition matrix
elements; when 8 = : within the same multiplet, we have operator expectation values. This has
already been indicated in Table 1.

In the case of = 5 = 2 + 1 flavours considered here we only need to give the amplitudes for
one particle in each isospin multiplet, and can then use isospin symmetry to calculate all other
amplitudes in (or between) the same multiplets. So, for example, we can calculate the Σ− and Σ0

matrix elements if we are given all the Σ+ matrix elements. Similarly, given the Σ− → = transition
amplitude, we can find all the other Σ→ # transition amplitudes.

Within the set of amplitudes between baryons there are 7 diagonal matrix elements: �#̄ [# ,
�Σ̄[Σ, �Λ̄[Λ, �Ξ̄[Ξ (� = 0) and �#̄ c# , �Σ̄cΣ, �Ξ̄cΞ (� = 1) and 5 transition amplitudes: �Σ̄cΛ
(� = 0), and �#̄  Σ, �#̄  Λ, �Λ̄ Ξ, �Σ̄ Ξ (� = 1/2) giving 7 + 5 = 12 in total. (There are a
further 5 inverse transition amplitudes, simply related to the previous 5 transition amplitudes.) A
Wigner-Eckart type theorem applies, the ‘reduced’ matrix element (or amplitude) being multiplied
by a Clebsch–Gordan coefficient. For example 〈? |� c+ |=〉 =

√
2 �#̄ c# =

√
2 〈? |� c0 |?〉 giving

〈? |D̄W3 |=〉 = 〈? | (D̄WD − 3̄W3) |?〉. Further details and tables are given in [3].
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Polynomial (* (3)
1 1
X<; 8
X<2

;
1 8 27

X<3
;

1 8 27 64

(* (3) ) , 1st class ) , 2nd class
3−like 5−like 3−like 5−like

1 3 5

8 A1, A2, A3 B1, B2 C1, C2 D1
27 @1, @2 F1, F2 G1 H1
64 I

Table 2: Left panel: All the quark mass polynomials up to$ (X<3
;
) classified by symmetry properties. Right

panel: The relevant 17 )-tensors, tabulated according to first/second class and 3- or 5 -type.

Matrix elements follow the schematic pattern for 2+1:

〈�8 |��9 |�:〉 =
∑
(singlet mass polynomial) × (singlet tensor)8 9:

+
∑
(octet mass polynomial) × (octet tensor)8 9:

+
∑
(27-plet mass polynomial) × (27-plet tensor)8 9:

+
∑
(64-plet mass polynomial) × (64-plet tensor)8 9: . (3)

We already know the mass polynomials, [2], as given in the LH panel of Table 2. So, for example,
the 27-plet part contains $ (X<2

;
) and $ (X<3

;
) terms. It remains to classify the )8 9: = 〈�8 |��9 |�:〉

3-index tensors, )8 9: and so need to look for a (* (3) decomposition of 8 ⊗ 8 ⊗ 8. Here we give
a very brief sketch. We consider the tensor under (* (3) rotations: ) ′

8 9:
= *

†
80
)012*1 9*2: and in

particular the change in ) under an infinitesimal transformation by a generator _U. Using isospin
constraints and known Casimir eigenvalues (solving 512 equations with Mathematica) imply that
there are 17 independent tensors with most )8 9: elements zero or

√
integer. These can then be

further classified, by first defining a reflection matrix, ', which inverts the outer ring of the octet.
The tensors can then be divided into first or second class depending on the symmetry

first class )8 9: = +):08'0 9 ,
second class )8 9: = −):08'0 9 ,

which interchanges �8 and �: and transposes the flavour matrix � 9 . This corresponds to the
Weinberg classification of currents into first and second class, [6], as discussed in [3].

There is an additional classification by the symmetry when ' is applied to all three indices

3−like )8 9: = +'80)012'1 9'2: ,
5−like )8 9: = −'80)012'1 9'2: .

We find eventually that there are 17 tensors: two singlets, eight octets, six 27-plets, one 64-plet all
contained in the 8 ⊗ 8 ⊗ 8 decomposition. These are listed in the RH panel of Table 2.

We are now in a position to give the polynomial expansions of the amplitudes to $ (X<3
;
).

The same notation is used for the tensor and its coefficient. For example considering 〈? |�[ |?〉 ≡
〈�2 |�5 |�2〉 = �#̄ [# at say $ (X<;) we have from LH Table 2 that it is octet. From RH Table 2 we
see that for first class, it can contain possible A1, A2, A3 and B1, B2 tensor contributions. Checking
which tensors have a non-zero 252 component gives a coefficient (A1 − B2).
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Thus, as an example, we eventually find for a 1st-class current

〈? |�[ |?〉 = �#̄ [#

=
√

3 5 − 3︸    ︷︷    ︸
1

+(A1 − B2︸ ︷︷ ︸
8

)X<;

+(
√

3 5 x − 3x︸      ︷︷      ︸
1

+ Ax
1 − B

x
2︸ ︷︷ ︸

8

+ 9@1 + 3@2 + 3
√

3F2︸                   ︷︷                   ︸
27

)X<2
;

+(
√

3 5 xx − 3xx︸        ︷︷        ︸
1

+ Axx
1 − B

xx
2︸   ︷︷   ︸

8

+ 9@x
1 + 3@x

2 + 3
√

3Fx
2︸                   ︷︷                   ︸

27

+ 3
√

3I︸︷︷︸
64

)X<3
; , (4)

(by this we mean the relevant 1st-class form factor) and as a further example for a 2nd-class current

〈=|� + |Σ−〉 = �#̄  Σ

= (
√

2C2 +
√

6D1)X<; + (
√

2Cx2 +
√

6Dx
1 +
√

5G1 +
√

2H1)X<2
; . (5)

Complete tables are given in [3].
It is natural to ask what do we gain for all this effort. The answer is that the expansions are

constrained, as can be easily ascertained by counting the available parameters. For 1st-class currents
there are 7 + 5 = 12 possible amplitudes and we have from the RH panel of Table 2

• $ (1) has 21 = 2 parameters

• $ (X<;) has 58 = 5 parameters

• $ (X<2
;
) has 21 + 58 + 427 = 11 parameters

while at $ (X<3
;
) we have 21 + 58 + 427 + 164 = 12 parameters and 12 amplitudes, so there are no

further constraints. (The subscript denotes the representation given in the RH panel of Table 2.)
Similarly for second-class currents – there are now 5 possible amplitudes, the expansion starts at
$ (X<;) and we have

• $ (X<;) has 38 = 3 parameters

while at $ (X<2
;
) we already have 38 + 227 = 5 parameters, so again there are no further constraints.

So in all cases we only have constraints at low orders in X<;.
Alternatively we can construct linear combinations of amplitudes so that we have only 3- or

5 -terms in the expansion. For example we have at$ (X<;) a 1st-class 3 expansion can be constructed

�1 ≡ −(�#̄ [# + �Ξ̄[Ξ) = 23 − 2A1X<;

�2 ≡ �Σ̄[Σ = 23 + (A1 + 2
√

3A3)X<;
�3 ≡ − �Λ̄[Λ = 23 − (A1 + 2A2)X<;

�4 ≡
1
√

3
(�#̄ c# − �Ξ̄cΞ) = 23 − 4

√
3
A3X<;

�5 ≡ �Σ̄cΛ = 23 + (A2 −
√

3A3)X<;

�6 ≡
1
√

6
(�#̄  Σ + �Σ̄ Ξ) = 23 + 2

√
3
A3X<;

�7 ≡ −(�#̄  Λ + �Λ̄ Ξ) = 23 − 2A2X<; (6)
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just as for the masses as in eq. (1) – a ‘3-fan’. We have 7 lines, but only 3 slope parameters, A1,
A2, A3, so the splittings are highly constrained. We can also construct quantities that are constant at
$ (X<;), for example -� ≡ (�1 +2�2 +3�4)/6 = 23 +$ (X<2

;
). (These ‘averages’ are not unique,

here we just use the diagonal terms.) Similarly for the 5 -fan: there are 5 lines, but only 2 slope
parameters, B1, B2, so splittings are again highly constrained. Examples of ‘fan’ plots and ‘averages’
for the vector current are given in [3]. For a recent example for the tensor charge, see [7].

As a further example consider the renormalised vector current (�A ∼ +4) at &2 = 0. This
simply counts the quarks (positive) and anti-quarks (negative). So for the 7 diagonal amplitudes,
the results are constant and known. This gives

�#̄ [# =
√

3 5 , �Σ̄[Σ = 0 , �Λ̄[Λ = 0 , �Ξ̄[Ξ = −
√

3 5 , �#̄ c# = 5 , �Σ̄cΣ = 2 5 , �Ξ̄cΞ = 5 , (7)

with 5 = 1/
√

2, 3 = 0. Note that because 3 vanishes then �Σ̄[Σ and �Λ̄[Λ are identically zero.
The vanishing of the $ (X<;) terms leads immediately to the vanishing of all the coefficients (i.e.
A1, A2, A3 and B1, B2). This then also implies that the 5 transition matrix elements also have no
$ (X<;) terms. This is the content of the Ademollo–Gatto theorem [8]. At the next order, $ (X<2

;
),

for the diagonal amplitudes we have 11 parameters but 7 constraint equations, so we can solve for
4 parameters, which we take to be @1, @2, F1, F2. Substituting into the transition amplitudes gives

�Σ̄cΛ = 0 + 40
(
@1 −

1
3
@2

)
X<2

;

�#̄  Σ = −
√

2 5 +
(
5
√

6(@1 + @2) − 5
√

2(F1 − F2)
)
X<2

;

�#̄  Λ = −
√

3 5 +
(
5(@1 −

5
3
@2) + 5

√
3(F1 +

1
3
F2)

)
X<2

;

�Λ̄ Σ =
√

3 5 +
(
5(@1 −

5
3
@2) − 5

√
3(F1 +

1
3
F2)

)
X<2

;

�Σ̄ Ξ =
√

2 5 +
(
5
√

6(@1 + @2) −
√

2(F1 + F2)
)
X<2

; . (8)

So we have one constraint between the 5 amplitudes at $ (X<2
;
).

We finally note that to complete the job to determine all expansions, we also need the singlet
[′ as given in Table 1. For example for D̄WD = �[′/

√
3 + � c0/

√
2 + �[/

√
6 (and similarly for 3̄W3,

B̄WB) we need the singlet i.e. �#̄ [′# . But these expansions are 8 ⊗ 1 ⊗ 8 and so have already been
determined by themass expansions [2]. For example from eq. (1)we have �#̄ [′# = 00+301X<;+. . .
which allows for example 〈? |D̄WD |?〉 to be determined. This construction is necessary for example
for the electromagnetic current. Again see [3] for more details.

3. Numerical results

We consider 2+ 1 Symanzik tree-level,$ (0) improved clover fermions, [9] at V = 5.50, where
0 ∼ 0.074 fm. At the flavour symmetric point "c ∼ 465MeV.

For the vector current (� ∼ +4) we have determined the 12 �1 form factors (amplitudes) at
&2 = 0 (using twisted boundary conditions for the transition amplitudes to achieve this) on a 243×48
lattice. Our preliminary results (for 5 quark masses) are given in Fig. 2. Note that on the <̄ = const.
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Figure 2: Left panel: The 7 diagonal �1 amplitudes together with fits as described in the text. The filled
points denote the numerical data, while the open points are at the physical pion mass. X<; = 0 is the
(* (3)-flavour symmetric point. Right panel: The 5 transition �1 amplitudes.

trajectory we have also a data set with a light strange quark mass and a heavy light quark mass.
In the LH panel we show the diagonal amplitudes for �1 and in the RH panel the transition

amplitudes also for �1, together with a joint constrained fit given by eqs. (7), (8). As expected first
for the diagonal amplitudes the numerical data is very constant (i.e. independent of the quark mass),
which the fit reproduces. Also as the renormalised value of 5 is 1/

√
2, then presently ignoring any

$ (0)-improvement, gives an estimate of the multiplicative vector renormalisation constant, /+ .
As �Σ̄[Σ and �Λ̄[Λ are identically zero (i.e. have a zero fit function) we fit these separately with a
constant, which gives a consistency check of the data.

Turning now to the RH panel of Fig. 2 we show the transition amplitudes for �1. The joint
constrained fits are given by eq. (8). We find little evidence of discrepancies from the leading
order, LO, constant values, except possibly for �#̄  Σ. However as the fit coefficients presently have
large uncertainties then it is really necessary to extend the computation to smaller quark masses,
before any conclusion can be reached. It is interesting to note that [10] finds some evidence for
discrepancies from the LO value for both �#̄  Σ and �Σ̄ Ξ, however they both increase the absolute
value of the amplitudes.
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4. Conclusions

In this talk we have discussed baryon octet (* (3)-flavour symmetry breaking expansions
for matrix elements (parallel to the previous mass expansions) for 2 + 1 quark flavours. This is
complementary to chiral expansions which start at a numerically out-of-reach zero quark mass,
rather than here where we start at the (* (3)-flavour symmetry point. As for the mass case we
again find constrained expansions. As an example, we have indicated that it might be possible to
investigate discrepancies from the vector current LO values for the baryon octet at &2 = 0. Among
various future extensions, one possibility is to consider the meson octet.
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