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Performance optimizations for porting the openQ★D package to GPUs Roman Gruber

1. Introduction

The advent of GPUs in modern supercomputers enables the path towards exascale computing,
where the peak operations per second is around 1018 [1]. To reach such a peak performance is
challenging and highly depends on the problem as well as the involved data types. Since lattice
QFT calculations are bound by memory bandwidth1 and not by compute performance, one must
think about how to reduce memory traffic in order to increase performance. For example, data types
with smaller bit lengths can be considered.

The scope of this work is an analysis of the different solver algorithms used in the lattice
QFT application openQ*D-1.1 [2]. This software package is used for the generation of fully
dynamical QCD+QED gauge configurations with C★ boundary conditions and 𝑂 (𝑎)-improved
Wilson-fermions. Different aspects of the solvers are highlighted to find potential for improvement.

The analysis in this document is performed using Python-implementations of the examined
kernels. This switch of programming language and philosophy enabled to run the kernels with
simulated data types that are usually non-accessible within the native application without significant
implementation effort.

2. Conjugate Gradient

The conjugate gradient kernel cgne()2 implements the algorithm already in mixed precision.
The complete kernel was simulated using different data types – floats as well as posits3. The
simulated data types were binary64, binary32, tensorfloat32, binary16, bfloat16, posit32, posit16,
and posit8 (please refer to table 1 for more information on these formats). The considered Dirac-
operator represented as a CSR-matrix had approximately 2% non-zero values.

Figure 1 shows all the simulated data types using a reduction data type of binary64, meaning
that all reduction operations where conducted in binary644. The following hierarchy is expected
(smaller means convergence in fewer steps):

binary64 < posit32 ≤ binary32 ≤ tensorfloat32 ≤ (1) ≤ posit16 ≤ binary16 ≤ (2) < posit8, (1)

where bfloat16 could be either at position (1) or (2), depending on what is more important;
precision or number range.

Notice that hte target relative residual, 10−12, is outside the representable number range of
binary16, posit16 and posit8. These data types cannot reach the target tolerance, therefore we didn’t
expect them to converge. This is indeed the case. Furthermore, we see that binary16 and posit16

1One of the most important kernels is the application of the Dirac operator to a spinor field, which can be seen as a
variant of sparse matrix-vector multiplication (SpMV).

2See line 429ff in modules/linsolv/cgne.c in [2]
3To produce the plots, the Dirac operator Dop_dble() was extracted in binary64 format from the original code

running a simulation of a 44 lattice, Schrödinger Functional (SF) boundary conditions (type 1), no C★ boundary
conditions (cstar 0) and 1 rank. The first 2000 trajectories were considered thermalisation. The matrix was extracted
in trajectory 2001. A Python script mimicking the exact behaviour of the cgne() kernel from the source code, was
implemented to cope with arbitrary data types.

4Eg: norms
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Figure 1: Convergence analysis of a conjugate gradient run, where binary32 was replaced by one of the simulated data types. The
number s describes the number of regular CG-steps needed (the value of status), while the number in the brackets indicate the number
of reset steps. Plot 4a shows the exact residue, ®𝑟𝑖 = ®𝑏 − 𝐴®𝑥𝑖 , calculated in every iteration in binary64, while plot 4b shows the norm of
the recursively calculated residue, ®𝑟𝑖 = ®𝑟𝑖−1 + 𝛼𝑖−1𝐴 ®𝑝𝑖−1, (cast to binary64 after calculation). The algorithm executes reset steps when
the residue is lowered by an amount roughly the machine epsilon of the datatype (cf. table 1). These are indicated at the bottom of the
plot. The relative residue suffers from round-off accumulation because of its recursive calculation; this is the difference between the two
residues in plots 4a and 4b, which is plotted in plot 4c. Plot 4d shows the 𝐴-orthogonality of the current direction with respect to the
last direction, namely the value of ®𝑝†

𝑖−1𝐴 ®𝑝𝑖 . The value of res – the desired relative residue of the calculated solution – is set to 10−12.

both are not able to go below 10−5, leading to no further considerable progress after step 45. This
can be seen by the recursive residue stalling or even increasing – an indicator that the data type has
reached its limits.

Both, binary32 and posit32, required the same number of steps, although round-off accumu-
lation and 𝐴-orthogonality are slightly better for posit32. The reason for this is due to the higher
density of posits in the relevant number regime (between −1 and 1) leading to higher precision.

Finally, we compare the three data types with the same exponent range, but different precisions;
binary32, tensorfloat32 and bfloat16 (cf. table 1). The less precision, the slower the convergence.
The price to go from 23 to 10 mantissa bits results in 1 more conjugate gradient step as well as
4 more reset steps. When going further down to 7 mantissa bits again 1 more regular step and 4
more reset steps where needed to finally bring bfloat16 to convergence after 56 regular plus 10 reset
steps. Bearing in mind that it occupies only 16 bits, this is a remarkable result, way better than its
16-bit competitors.

3
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Floating-point format limits
data type 𝑓𝑚𝑎𝑥 𝑓𝑚𝑖𝑛 𝑓𝑠𝑚𝑖𝑛 sign. digits 5 machine 𝜖
binary64 (e=11, m=52) 1.8 × 10308 2.2 × 10−308 4.9 × 10−324 ≤ 15.9 2.2 × 10−16

binary32 (e=8, m=23) 3.4 × 1038 1.2 × 10−38 1.4 × 10−45 ≤ 7.2 1.2 × 10−7

binary16 (e=5, m=10) 6.6 × 104 6.1 × 10−5 6.0 × 10−8 ≤ 3.3 9.8 × 10−4

bfloat16 (e=8, m=7) 3.4 × 1038 1.2 × 10−38 9.2 × 10−41 ≤ 2.4 7.8 × 10−3

tfloat32 (e=8, m=10) 3.4 × 1038 1.2 × 10−38 1.1 × 10−41 ≤ 7.2 9.8 × 10−4

posit32 (es=2) 1.3 × 1036 7.5 × 10−37 N/A ≤ 8.1 7.5 × 10−9

posit16 (es=1) 2.7 × 108 3.7 × 10−9 N/A ≤ 3.6 2.4 × 10−4

posit8 (es=0) 64 1.6 × 10−2 N/A ≤ 1.5 3.1 × 10−2

Table 1: Summary of highest representable numbers, 𝑓𝑚𝑎𝑥 , minimal subnormal, 𝑓𝑠𝑚𝑖𝑛, and non-subnormal, 𝑓𝑚𝑖𝑛, representable
numbers above 0 in any common IEEE 754 floating-point and posit format [3–6] together with their approximated precision in decimal.
𝑒 and𝑚 denote the number of exponent and mantissa bits for floats, whereas 𝑒𝑠 denotes the maximal number of exponent bits for posits.

As seen in plot 4a, all data types start to converge by the same speed (all slopes are equal). The
least precise data type, namely bfloat16with its 7mantissa bits, resets first, followed by binary16 and
tensorfloat32, both with 10 mantissa bits. The next one is posit16, because it has more precision
than binary16 in the relevant regime, followed by binary32 with 23 mantissa bits and later by
posit32, where the same argument as before holds. The curve of binary64 would also reset at some
point, but that never triggered in this run.

Specially plot 4a suggests that we can start to calculate in a data type with 16 bits of length until
we fall below a constant value (proportional to the machine epsilon), then continuing the calculation
in a data type with 32 bit-length until that number regime is exhausted as well, again switching to a
64 bit data type to finish the calculation.

2.1 Preliminary conclusions for the CG solver

Reduction variables should be chosen in a data type with large precision and number range,
such as binary64, regardless of the current data type, since type conversions between different IEEE
floating-point types are not considered to be expensive. On the other hand, the number of variables
needed in that data type does not scale with the problem size or the number of steps, we can use a
data type with large bit-length such as binary64.

The difference between tensorfloat32, binary32 and bfloat16 answers the question how impor-
tant precision is in the calculation. The only relevant difference was in the number of reset steps.
If the data type is lower in bit-length, the memory-boundedness of the problem suggests that the
calculation performs faster. The trade-off is the amount of (computationally more expensive) reset
steps that increase with lower precision.

3. Schwarz Alternating Procedure

Domain decomposition is a way to partition the large system into (possibly many) smaller
sub-problems with regularly updated boundary conditions coming from solutions of neighbouring
sub-problems. They fit well into the notion of parallel processing because the sub-problem can
be chosen to be contained in one single rank. The full lattice is split into sub-lattices called local

5Number of significant digits in decimal.
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lattice. Each rank has its own local lattice, the size of which is determined at compilation time.
The full lattice consists of the ensemble of all local lattices arranged in a grid. These local lattices
can be split as well into blocks. It is therefore advisable to choose the size of the blocks as divisor
of the local lattice size such that one or more blocks fit into one rank. These sub-problems can then
be solved using an iterative solving method.

Ω1 Ω2 Ω3 Ω4

Ω5 Ω6 Ω7 Ω8

Ω9 Ω10 Ω11 Ω12

Ω13 Ω14 Ω15 Ω16

Figure 2: A 𝑑 = 2 dimensional example of a decomposition of a lattice Ω =
⋃𝑛

𝑖=1 Ω𝑖 into 𝑛 = 16 domains named Ω𝑖 . Notice such a
decomposition can always be colored like a chessboard.

The idea behind Schwarz Alternating Procedure is to loop through all blocks Ω𝑖 and solve
the smaller sub-problem using boundary conditions given from the most recent global solution (cf.
figure 2). If the original problem only includes nearest-neighbour interactions, the solution of a
block Ω𝑖 depends only on that block and its exterior boundary points, which are the adjacent points
on the neighbouring blocks with opposite color. For example, the solution of the sub-problem
involving Ω6, depends only on the solutions of Ω2, Ω5, Ω7 and Ω106. Therefore, all grey (white)
blocks can be solved simultaneously, with the most recent boundary conditions obtained from the
white (grey) blocks. Solving all grey, followed by all white blocks is called a Schwarz-cycle and is
considered one iteration in SAP. Each block can be solved with any desired solver separately.

Whereas the division into domains on the lattice is straightforward, the representation of the
Dirac-operator as a sparse matrix and its decomposition is not. Looking at an actual example of a
Dirac-operator written as a matrix (cf. figure 3 left), one observes a lot of structure: while on the
diagonal we find the operators restricted to the black andwhite blocks, the first and the third quadrant
describe the operators restricted to the interior and exterior boundaries. The decomposition into
2𝑛 domains (𝑛 grey and 𝑛 white blocks) can be translated as seen in figure 3 right. Notice that the
restricted operators 𝐷𝑖 are easily solved, because they have block diagonal form.

3.1 Setup

The complete SAP+GCR kernel was implemented using Python in the same way as the fgcr()
function from the source code7. The Python implementation allowed a floating-point data type for
the reduction variables separately (rdtype). It also accepts a "large" data type (ldtype) by which
the restart steps are calculated in, and a "small" data type (sdtype) in which the regular and the MR
steps are performed in. The result is obtained in terms of the "large" data type. There are various
configuration settings to choose from (cf. table 2).

6It depends on all other sub-problems as well, but indirectly.
7See line 212ff in modules/linsolv/fgcr.c in [2].
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Figure 3: Left: An example plot of a Dirac-matrix of an 84-lattice with SF-boundary conditions. The operator is already in a shape,
where the even lattice points come first, followed by the odd lattice points. Every pixel consists of 192× 192 real numbers. White pixels
denote zero, black pixels non-zero. Right: Schematic of the Dirac-operator in terms of a large sparse matrix. If the components of the
black blocks are arranged such that they appear first, then the decomposition from figure 2 can be translated into a matrix with blocks
as in the picture. 𝐷𝑖 describes the Dirac-operator restricted to block 𝑖 and 𝐷𝜕𝑏 (𝐷𝜕𝑤) is the Dirac-operator restricted to the external
boundaries of the black (white) blocks. The color external boundary operators can be decomposed into external boundary operators of
the 𝑖-th block, 𝐷𝜕∗

𝑖
. The right side describes a vector decomposed into the same 2𝑛 domains 𝜓1, . . . , 𝜓2𝑛. The upper half corresponds

to the black blocks and the lower half to the white blocks.

setting meaning
res desired relative residual
nmx maximal number of GCR steps
nkv number of generated Krylov vectors until restarting the algorithm
ncy number of SAP-cycles to perform in each iteration
nmr number of MR-steps to perform on each block in each SAP-cycle
bs block size
ldtype "large" data type
rdtype reduction data type
sdtype "small" data type

Table 2: Settings for SAP+GCR and their meanings.

The possible data types for ldtype, rdtype and sdtype are binary64 and binary328.
For the operator in figure 4, we see that preconditioning gives no significant improvement. This

shows that for well-conditioned operators, too much preconditioning worsens the performance.
(𝑛𝑐𝑦 , 𝑛𝑚𝑟 ) = (1, 4) is the configuration with the least amount of preconditioning. The CPU
run-time shows a strong dependence on the configuration; there are even certain exceptional
configurations, eg. (12, 2), that are more than 40 times slower than the non-preconditioning case
(0, 0). An unsuitable choice of configuration parameters can thus lead to a significant performance
degradation. However, the plots show that performance of the algorithm is overly sensitive to the
choice of these parameters. The adaptive variant might be of advantage here (cf. section 3.2).

The operator in figure 5 was at the critical point 𝑘 = 𝑘𝑐. This is the regime where SAP-
preconditioning shows its true potential; nearly all cases performed better than the trivial case.

8Unfortunately, there was no possibility to use binary16, bfloat16 or tensorfloat32, even though modern GPUs such
as the one tested on do support these data types. The reason for this is the data types were not available in the used CUDA
library, CuPy [7].
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For the pure-CPU cases, we see no strong dependence on the amount of preconditioning, but on
the block size. Small block sizes seem to be beneficial, while the pure-GPU variant prefers large
block sizes. The hybrid cases – as usual in-between – are closer to the pure-GPU ones, because
despite being hybrid most of the work is done on the GPU. The pattern within a certain block size
is repeating and the best amount of preconditioning seems to be at (4, 6).
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Figure 4: Time measurements for the SAP_GCR kernel on different matrices and configurations. The measurements were conducted on
an Intel(R) 6130 @ 2.10GHz with 1.5 TB memory and an NVIDIA V100 (via PCIe) GPU with 16 GB memory. The x-axis gives the
configuration in terms of (𝑛𝑐𝑦 , 𝑛𝑚𝑟 ) , the alternating shaded regions give the block size, whereas the shape of the data points indicate
the processing device; circle, cross, diamond = pure CPU, pure GPU, Hybrid. Hybrid means that only the blocked problems where
solved on the GPU.

Since the algorithm is applied to many different Dirac-operators among evolving HMC-
trajectories – some well-conditioned, some ill-conditioned – it can be hard or even impossible
to choose a set of parameters suitable for all cases. In particular, it is unavoidable to accidentally
make a choice that falls on a configuration with exceptional long convergence time for a certain
Dirac-operator within the long running HMC-simulation. It is therefore advisable to have the pos-
sibility to change the parameters during an active run or a configuration that adapts. This motivates
the following proposal.

3.2 Proposal for an adaptive variant of SAP+GCR

Since the choice of parameters in the SAP+GCR kernel seems non-trivial, we propose an
adaptive variant of this algorithm. In this version, the interpretation of the two parameters 𝑛𝑐𝑦 ,
𝑛𝑚𝑟 from table 2 is slightly different; they now denote the maximal amount of Schwart-cycles and
MR-steps, respectively. The actual 𝑛𝑐𝑦 , 𝑛𝑚𝑟 were chosen automatically in every iteration anew.
They were determined as follows: If – after a Schwarz-cycle – the norm of the residual is not
lower than the residual norm before the cycle, the preconditioning phase ends. Thus, at least one

7
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Figure 5: Time measurements for the SAP_GCR kernel on different matrices and configurations. The measurements were conducted on
an AMD EPYC 7742 CPU@ 2.25GHz with 512 GB memory and an NVIDIA A100 (via SXM4) GPU with 40 GB memory. See figure
4 for more information.

Schwarz-cycle is performed in every step. A similar, but slightly more complicated strategy is
applied to determine the number of MR-steps. There are 3 exit conditions for the MR-solver:

1) If – after at least 4MR-steps – the normof the residual on the block is larger than𝛼 = 0.99 times
the previous residual norm, the MR-solver exits, and the application continues processing the
next block.

2) If the norm of the blocked residual becomes larger than the previous residual norm, the solver
exits immediately, even if only one MR-step is executed.

3) If the norm of the blocked residual is smaller than the tolerance10, the algorithm exit imme-
diately too.

Every block is treated differently in every cycle. A maximum of 20 Schwarz-cycles and
20 MR-steps on each block would be performed if the above exit conditions never kick in. The
third exit condition above makes sure to not overshoot the mark if the algorithm performs a lot of
Schwarz-cycles and MR-steps, i.e. if the problem is already solved while in the preconditioning

9Ironically, the choice for the value of 𝛼 ∈ (0, 1] is again non-trivial. Small values cause less preconditioning while
values close to 1 will end up in more or even the maximal number of MR-steps. But since we want to optimise for
ill-conditioned systems and the penalty for well-conditioned systems is acceptable, it is advisable to choose 𝛼 large, such
as 𝛼 = 0.9

10This is the tolerance calculated in the GCR solver divided by the number of blocks, 𝑡𝑜𝑙 = 𝑟𝑒𝑠 ∗ ∥[∥/𝑛𝑏 , where res
is the desired relative residual given as configuration option (see table 2), [ is the source vector and 𝑛𝑏 is the number of
blocks.
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phase. This can happen if the operator is very well-conditioned or in the very last GCR-step before
converging to the desired relative residual. Therefore, the adaptive version tries to find the optimal
configuration for every iteration of the GCR-solver, for every Schwarz-cycle and for every block
separately. By empirical observation of the results, the adaptive variant usually performs nearly
maximal amounts of preconditioning in the first few GCR-steps, then rapidly decreases after some
steps and finally saturate to the minimal amount that stays until convergence.

The results on how this adaptive variant competes with static configurations can be seen in the
figures indicated by a configuration adap. (𝛼 = 0.9) and adap. (𝛼 = 0.7). Although the adaptive
variant of the algorithm is not the fastest among all configurations, the plots show that it is certainly
the most versatile one. It can be of benefit if the condition of the operator is not known beforehand
and might even change drastically within a long running simulation.

A reference implementation has been added to openQ★D and can be found in the GitLab
repository ref. [8].
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