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We present analysis details and new results for the strong coupling UB (</ ), determined by
the decoupling strategy. We measure a massive gradient flow (GF) coupling defined in finite
volume with Schrödinger functional (SF) boundary conditions in a theory with #f = 3 degenerate
heavy quarks of mass " . The massive couplings are matched to effective couplings in pure
gauge. Using the running in the pure gauge theory and the perturbative relation of the Lambda
parameters, the Lambda parameter of the three flavor theory is obtained by an extrapolation to
infinite M. Our final result is compatible both with the FLAG average and with the previous
ALPHA result, albeit with a slightly smaller, yet still statistics dominated, error. This constitutes a
non-trivial check, as the decoupling strategy is conceptually very different from the 3-flavor QCD
step-scaling method, and so are most of its systematic errors. These include the uncertainties
of the decoupling and continuum limits, which we discuss in some detail. Furthermore, by
relying on decoupling once again, we could estimate the small$ (0) and$ (1/") contaminations
to the massive GF coupling stemming from the SF boundaries bymeans of pure gauge simulations.
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1. Introduction

The determination of the running coupling UB = 62/(4c) of the strong force yields [1–12] with
most precise results from lattice QCD based on finite volume renormalization schemes. In [13]
we implement a new strategy to extract UB from lattice QCD simulations based on the decoupling
relation for a massive coupling

62
#f=3(`, ") = 6

2
#f=0(`) +$ ((Λ/")2, (`/")2) . (1)

Here 62
#f=3(`, ") is a renormalized coupling in QCD with #f = 3 massive quarks of mass " 1

and 62
#f=0(`) is the coupling in the pure gauge theory. The renormalization scale, `, is the same

in both theories. The result of Ref. [12] is based on the non-perturbative running of the coupling
from low to high energies. Eq. (1) defers this computation to the pure gauge theory, where very
high precision can be achieved [15, 16]. We computed a finite volume coupling in a setting with
#f = 3 mass-degenerate heavy quarks for values of the quark mass ranging from charm to above the
bottom and already provided a proof of principle that Eq. (1) can be used to extract UB [13]. Here
we present our latest results, confirming the world average of UB with another independent method,
and a good chance to further reduce its uncertainty.

2. Strategy

Decoupling [17, 18] applies to dimensionless, renormalized, low-energy, quantities which
include suitably defined couplings at low renormalization scales. Eq.(1) holds when the two
theories are matched, i.e. that the Λ-parameter of the #f = 0 theory is chosen such that

Λ
(0)
MS
= Λ

(3)
MS

%0,3("/Λ(3)MS
) . (2)

%0,3 is the matching factor between the two theories, which, if " is large enough, can be computed
very accurately in perturbation theory [14, 19–24]. Equations (1), (2) can be exploited to determine
the three flavor Λ-parameter following these steps:

• Choose a low energy renormalization scale `, that is known in physical units (MeV) in the
three flavor theory.

• Determine a massive coupling 62
= 62

#f=3(`, ") on lattices with different lattice spacing 0,
and take the continuum limit.

• Determine the non-perturbative V-function of the coupling in the #f = 0 theory and compute
the Λ-parameter in units of ` [15]

Λ(0)

`
= (106

2)−11/(212
0) 4−1/(2106

2) exp
−

6∫
0

[
1
V(G) +

1
10G3 −

11

12
0G

]
3G

 . (3)

The Λ-parameter in the MS scheme is then given exactly by a 1-loop relation. For more
details on the exact procedure see [13].

1We follow the notation of [14] and denote by " the renormalization group invariant (RGI) quark mass, and by Λ
the Lambda-parameter of QCD in the MS scheme.
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• Obtain the #f = 3 Λ-parameter in physical units as

Λ
(3)
MS
= ` ×

Λ
(0)
MS
`
× 1
%0,3("/Λ(3)MS

)
+$ ("−2) . (4)

Finally, the result can be translated to the commonly used coupling constant U (5)B ("/ ), relying on
the use of perturbation theory in the MS scheme at the charm and bottom mass thresholds. In [13]
we have shown, that this strategy is viable and able to reduce the uncertainty of the strong coupling.
Several of the above steps were already carried out within different projects, e.g., we know that
in the three flavor theory 62

GF(`, " = 0) = 3.95 implies ` = 789(15) MeV [12, 25], where 6GF
denotes the gradient-flow coupling, that runs with the box-size of the system ` = 1/! [26]. We
denote this particular choice of renormalization scale by `dec from here on. It is the low-energy
scale (low in the sense that ` � ") at which decoupling in the form of eq. (1) is applied. Another
important ingredient that has already been worked out, is the V-function of the #f = 0 gradient-flow
coupling. It has been constructed non-perturbatively to a very high precision, such that Eq. (3) can
be evaluated for a large range of couplings [15]. The other key ingredient is a precise determination
of the massive coupling at scale ` for various " . These simulations have to follow so-called lines
of constant physics which give the bare parameters of the discretized theory such that

62
GF(`dec, 0) = 3.95 , "/`dec ≡ I ∈ {2, 4, 6, 8, 12} (5)

for various resolutions 0/! = 0`dec. In a B-physics project of our collaboration [27], bare couplings,
6̃2

0 and hopping parameters ^ = ^crit have been tuned such that the condition for themassless coupling
is satisfied within less than 4o/oo and such that indeed the quarks are massless to high accuracy. The
chosen resolutions are !/0 = 12, 16, 20, 24, 32 and 40, where the parameters of !/0 = 40 can be
inferred from [25]. For the massive coupling, fixed values of I = "! determine 0" and therefore
the hopping parameter ^. Their relation is provided by the following renormalization

" =
"

<(`)
/�(6̃0)
/% (6̃0, `)

<PCAC
(
1 + (1� − 1%)0<@

)
, <PCAC = /̂ (6̃0)<@ (1 + 1̂ 0<@) , (6)

where 0<@ = 1/(2^) − 1/(2^crit) is the bare subtracted quark mass. All parameters in the relation
between PCAC mass and RGI quark mass are known from [28] and /� from [29]. We have carried
out massless MC simulations to determine /̂ and 1̂ with an example depicted in Fig. 1 on the left.
The knowledge of these parameters allows massive MC simulations of !/0 = 12, 16, 20, 24, 32, 40
with ) = 2! and for the I-values in Eq. (5) we have " ≈ 1.6 . . . 9.5 GeV, see the right plot of Fig. 1
for an overview of massive simulations to be discussed below. The fine resolutions are crucial to
fully control the continuum limit 0/! → 0 of

6̄2
#f=3(`, I) for 6̄2

#f=3(`, 0) = 3.95, ` = 1/!, I = !" , (7)

which gives values for the massive coupling in the continuum limit. The second limit that needs to
be controlled is " →∞ in eq. (4).

Before we discuss howwe obtain numerical control over the double limit limI→∞ lim0/!→0, we
need to explain some details on the simulations, in particular the definition of the non-perturbative
coupling, associated systematic effects and how we control them.
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Figure 1: (left) Bare mass <PCAC as a function of the bare subtracted mass <q = 1/2^ − 1/2^2 for various
values of ^ and 62

0 fixed as explained. The fit determines ^2 , /̂ , 1̂ for the resolution !/0 = 16 and with
Schrödinger Functional boundary conditions and ) = !. (right) Renormalized PCAC masses of the massive
simulations, giving an overview of simulated resolutions !/0 and quark masses " , also providing a non-
trivial check of our simulation parameters as simulated (intended) I values correspond to measured and
renormalized !" values in the continuum limit.

3. Simulations and Analysis

For the Monte-Carlo simulations we use the open-source (GPL v2) openQCD package2 [30] in
plain C with MPI parallelization. The software has been successfully used in various large-scale
projects and we use it in its version openQCD-1.6 with additional implementation of

• the correct Schrödinger Functional boundary conditions for the Symanzik improved gauge
action with SF boundary conditions precisely as in [25],

• on-the-fly measurements of gradient-flow observables using the Zeuthen flow [31], including
measurements of the gradient flow coupling and the topological charge,

• on-the-fly measurements of Schrödinger Functional correlators, needed for the determination
of the PCAC mass.

All simulations in this project use the Lüscher-Weisz improved gauge action with O(0) improvement
for #f = 3 quarks tuned at and around zero quark mass in the first respectively quark masses
" ≈ 1.6 . . . 9.5GeV in the second set of simulation runs.

We use a gradient flow coupling in a finite volume ) × !3 with Schrödinger functional (SF)
boundary conditions [13]. In this setting the formally leading corrections to decoupling are not
1/"2 but they are 1/" . In the low energy effective field theory the 1/" term originates from
only one operator, tr �0:�0: located at the two time-boundaries of the SF manifold. The exactly
same term is responsible for $ (0) terms of the pure gauge SF. Its renormalization group improved
perturbative expansion has recently been discussed [32]. In complete analogy we are able to treat
the 1/" term and show that it is very small. Its smallness is due to a combination of 1) the
smallness of the coefficient in the effective theory, which follows from [33], 2) the vanishing of

2http://luscher.web.cern.ch/luscher/openQCD/
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the anomalous dimension of tr �0:�0: at the boundary [32] and 3) our choice ) = 2!. The latter
was a precaution that we took in [13]. We are presently working out the coefficient of tr �0:�0: to
next to leading order in perturbation theory in 6̄2

MS
(<★), where <MS(<★) = <★. The effect of the

boundary operator can then be determined in the pure gauge theory. In summary, while 1/" terms
are there, they can be estimated well and are negligible. Also $ (0) boundary lattice artifacts are
suppressed by the choice ) = 2! and are very small due to the implemented one-loop boundary
O(0) improvement.

The basis for the analysis of the continuum and decoupling limits is determined via first
applying Symanzik EFT [34] and then performing a heavy quark mass expansion of that continuum
EFT. The first step tells us that the only ∼ 02 cutoff effects accompanied by positive powers of the
quark mass are of the form 02"2, once O(0) improvement is done. The second step yields a series
in powers of 1/"2 of all terms in the Symanzik EFT, when we make the usual assumption that
also the second level EFT is described by a local effective Lagrangian. Taking only the leading
corrections, this argumentation yields

6̄2(I8) = 28 + ?1 [UB (0−1)]Γ̂1 (0/!)2 + ?2 [UB (0−1)]Γ̂2 (0")2, (8)

as a fit function for performing the continuum limit. The presence of log-corrections of the form
[UB (0−1)]Γ̂8 is due to the anomalous dimensions of the operators in the EFTs. There is partial
knowledge on them from Husung et al. [32, 35, 36], but it is not yet complete. We will vary the Γ8
to an extent suggested by [32, 35, 36], being aware that this is not the end of the story.

The combined, linear fit of our data using Eq. (8) is shown in Fig. 2. In order to get a good
quality of the fit (min. j2), we only take data points with I ≥ 4 and 0" ≤ 0.4 into account. We
see in the right plot of Fig. 2 that the I = 2 data shows a very different slope in (0")2 compared
to the other data sets. Further, varying the exponents Γ̂8 in the range [−1 . . . 1] gives a systematic
error which is negligible in the final result of Λ. We use Γ̂1 = Γ̂2 = 0 for our central values.
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Figure 2: The gradient flow couplings 6̄2
I = 6̄

2 (`, I`) of our massive simulations for I = 2, 4, 6, 8, 12 from
bottom to top versus the leading discretization effects (0/!)2 (left) and (0")2 (right), together with the
combined, correlated, linear fit in Eq. (8), taking into account only data points with I ≥ 4 and 0" ≤ 0.4.
Note, the crosses on 0 = 0 axes stem from individual I extrapolations, not the combined fit.

Using Eqs. (3) and (4) we translate our continuum extrapolated couplings 6̄2
I = 6̄2(`, I`)

into Λ(3)
MS

-parameters in physical units. For the decoupling (" → ∞) extrapolation we find the

5
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functional form

Λ
(3)
MS
(I) = � + �

I2 [UB (<★)]
Γ̂ with <MS(<★) = <★, (9)

where again the fractional exponent Γ̂ of the logarithmic correction is not known. In fig. 3 we
fit Eq. (9) to the continuum extrapolated Λ(3)

MS
-parameters, omitting the data point with I = 4 which

is clearly outside 1/I2 scaling, and present the extrapolated values for Γ̂ ∈ [−1, 1] in the right plot.
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Figure 3: Values for Λ(3)
MS

determined from the decoupling relation Eq. (4) and their extrapolation " → ∞
using Eq. (9). In order to get a good quality of the fit (min. j2) we only take data points with I ≥ 6
into account (left). The right plot shows different extrapolations for different exponents Γ̂ ∈ [−1, 1] of the
logarithmic corrections in Eq. (9), with the grey band indicating the preliminary result and error given below.

4. Conclusions and Outlook

With the present status of the simulations and their continuum (0/! resp. 0" → 0) and
decoupling (" →∞) limits, we derive a preliminary value of

Λ
(3)
MS
= 332(10) (2) MeV

where we add a systematic error of 2MeV for the variation with Γ̂ in Eq. (9). The final value is about
one standard deviation smaller, but in agreement with the previous result Λ(3)

MS
= 341(12)MeV [12],

entirely performed in the #f = 3 theory. We want to stress that the present analysis is a largely
independent computation, only the scale `dec is in common, which contributes an overall ∼ 40% to
the error squared in the present analysis. The four-loop prediction for Λ(5)

MS
/Λ(3)

MS
yields

UB ("/ ) = 0.1179(7) (1) (1) = 0.1179(7),

where the first two errors are the translations of the errors (10) (2) for Λ(3)
MS

and the last one is the
difference between using perturbation theory with all known orders and 2 orders less, respectively.
In order to reduce the error further, we work on refining the analysis, e.g., by fixing the exponents
Γ̂8 , and including more data points with increased statistics. Some simulations are still ongoing or
yet to be analyzed and we may hope for a reduction of the error of the world average by a factor of
two since at the same time, we will use the synergy with other projects of the ALPHA collaboration
to reduce uncertainties in other elements which go into the analysis and final result. These are:
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• The determination of `dec in physical units [13] is based on 1) the scale setting of CLS
[12, 37] and 2) the running of the massless GF coupling between `dec and `dec/4. These will
be improved by:

1. Newer CLS ensembles reach down further in the light quark masses. This will allow
for an improved scale setting [38].

2. The ALPHA collaboration B-physics project performs extensive simulations in !0 =

1/`dec as well as !1 = 2!0, !2 = 4!0 volumes. The step scaling function of the
massless GF coupling will be determined with higher precision and better resolution
than in [25] exactly in the range of scales needed here.

• While the determination of the #f = 0 V-function in [15] is very precise, it does contribute a
non-negligible amount to the overall uncertainty, which could be further reduced. Note that
we are also performing further cross-checks on the determination of the pure gauge theory
Λ-parameter.

For more details on our new procedure based on decoupling and an overview of past, present, and
future of precision determinations of the QCD coupling from lattice QCD, please see [39–41].
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