
P
o
S
(
L
A
T
T
I
C
E
2
0
2
1
)
4
9
4

Tensor Charges and their Impact on Physics Beyond the
Standard Model

R. E. Smail,a,∗ R. Horsley,b Y. Nakamura,c H. Perlt,d D. Pleiter,e P. E. L. Rakow, f G.
Schierholz,g H. StÜuben,h R. D. Younga and J. M. Zanottia
aCSSM, Department of Physics, University of Adelaide, Adelaide SA 5005, Australia
bSchool of Physics and Astronomy, University of Edinburgh, Edinburgh EH9 3FD, UK
cRIKEN Center for Computational Science, Kobe, Hyogo 650-0047, Japan
dInstitut fÜur Theoretische Physik, UniversitÜat Leipzig, 04103 Leipzig, Germany
ePDC Center for High Performance Computing, KTH Royal Institute of Technology, SE-100 44 Stockholm,
Sweden

f Theoretical Physics Division, Department of Mathematical Sciences, University of Liverpool, Liverpool
L69 3BX, UK

gDeutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
hUniversitÜat Hamburg, Regionales Rechenzentrum, 20146 Hamburg, Germany

E-mail: rose.smail@adelaide.edu.au

The nucleon tensor charge, gT , is an important quantity in the search for beyond the StandardModel
tensor interactions in neutron and nuclear β-decays as well as the contribution of the quark electric
dipole moment (EDM) to the neutron EDM.We present results from the QCDSF/UKQCD/CSSM
collaboration for the tensor charge, gT , using lattice QCD methods and the Feynman-Hellmann
theorem. We use a flavour symmetry breaking method to systematically approach the physical
quark mass using ensembles that span three lattice spacings.

The 38th International Symposium on Lattice Field Theory, LATTICE2021 26th-30th July, 2021
Zoom/Gather@Massachusetts Institute of Technology

∗Speaker
∗For the QCDSF-UKQCD-CSSM Collaborations

© Copyright owned by the author(s) under the terms of the Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0). https://pos.sissa.it/

mailto:rose.smail@adelaide.edu.au
https://pos.sissa.it/


P
o
S
(
L
A
T
T
I
C
E
2
0
2
1
)
4
9
4

Tensor Charges and their Impact on Physics Beyond the Standard Model R. E. Smail

1. Introduction

Historically nuclear and neutron beta decays have played an important role in determining
the vector-axial (V-A) structure of weak interactions and in shaping the Standard Model (SM).
However, more recently neutron and nuclear β-decays can be used to probe the existence of
Beyond the Standard Model (BSM) tensor and scalar interactions. Many experiments are underway
worldwide with the aim to improve the precision of measurements of neutron decay observables,
two being the neutrino asymmetry B [1], and the Fierz interference term b [2, 3]. The parameter b
has linear sensitivity to BSM physics through:

bBSM =
2

1 + 3λ2

[
gSεS − 12λgT εT

]
≈0.34gSεS − 5.22gT εT ,

(1)
bBSMv =

2
1 + 3λ2

[
gSεSλ − 4λgT εT (1 + 2λ)

]
≈0.44gSεS − 4.85gT εT ,

(2)

where εT and εS are the new-physics effective couplings, gT and gS are the tensor and scalar
nucleon isovector charges and λ = gA/gV [4]. Here bBSMv is a correction term to the correlation
coefficient B. Data taken at the Large Hadron Collider (LHC) is currently looking at probing scalar
and tensor interactions at the . 10−3 level [4]. However to fully assess the discovery potential of
experiments at the 10−3 level it is crucial to identify existing constraints on new scalar and tensor
operators.

The quark tensor charges are important quantities when analysing the neutron electric dipole
moment (EDM). The neutron EDM is sensitive to CP violation and hence is an excellent probe in
the search for physics beyond the Standard Model. CP violating interactions contribute largely to
the quark EDM. The dependence of the neutron EDM on the quark EDM, dq, is related to the quark
tensor charges, δq, by [5–7]:

dn = duδd + ddδu + dsδs. (3)

Here du, dd, ds, are the new effective couplings which contain new CP violating interactions
at the TeV scale. The current experimental data gives an upper limit on the neutron EDM of
|dn | < 2.9 × 10−26e cm [8]. In calculating the tensor charges and knowing a bound on dn, we are
able to constrain the couplings, dq, and hence BSM theories.
QCDSF/UKQCD/CSSM collaborations have an ongoing program investigating various hadronic
properties using the Feynman-Hellmann theorem [9–16]. Here we extend this work to a dedicated
study of the nucleon scalar and tensor charges. We discuss a flavour symmetry breaking method
to systematically approach the physical quark mass. Finally, we look at the potential impact of our
results on measurements of the Fierz interference term.

2. Simulation Details

In our simulations, we have kept the bare quark mass, m̄ = (mu +md +ms)/3, held fixed at its
physical value, while systematically varying the quark masses around the SU(3) flavour symmetric
point, mu = md = ms, to eventually extrapolate results at the physical point. We also have
degenerate u and d quark masses, mu = md ≡ ml, restricting ourselves to n f = 2 + 1. The lattice
spacings and pion masses are represented graphically in Fig. 1. Here the solid points represent
the ensembles reported in this proceeding while the open points are still being finalised. We have
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Figure 1: Lattice ensembles that will be used in this work characterised by pion mass, mπ , and lattice
spacing, a. The black lines represent the physical pion and kaon masses, where the continuum limit occurs
as a → 0. The solid points represent the ensembles used in this proceeding while the open points are still
being finalised.

five lattice spacings, a = 0.082, 0.074, 0.068, 0.059, 0.0521 fm enabling an extrapolation to the
continuum limit as well as three lattice volumes 323×64, 483×96 and 643×96, which are indicated
by the shapes of the points in Fig. 1.

3. Calculating Matrix Elements using The Feynman-Hellmann Theorem

The Feynman-Hellmann (FH) theorem is used to calculate hadronic matrix elements in lattice
QCD through modifications to the QCD Lagrangian. Consider the following modification to the
action of our theory:

S → S + λO. (4)

Then the FH theorem as shown in Ref. [9, 13], provides a relationship between an energy shift and
a matrix element of interest:

∂EX,λ(®k)
∂λ

���
λ=0
=

1
2EX(®k)

〈X, ®k | O |X, ®k〉 . (5)

Importantly, the right-hand side is the standard matrix element of the operator O inserted on the
hadron, X , in the absence of any background field. In lattice calculations, we modify the action in
Eq. 4, then we examine the behaviour of hadron energies as the parameter λ changes, and extract
the above matrix element from the slope at λ = 0.

3.1 Application and Implementation

In order to calculate the tensor charge, the extra term we add to the QCD action is:

S → S + λ
∫

d4xiq̄(x)σµνγ5q(x), (6)
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where we will take the case of each quark flavour, q, separately. The tensor charge is related to the
following nucleon matrix element:

〈 ®p, ®s | T µν | ®p, ®s〉 =
2

mN
(sµpν − sνpµ)δq, (7)

where T µν = iq̄σµνγ5q. In our simulations, we have chosen µ = 3, ν = 4:

〈 ®p, ®s | T 34 | ®p, ®s〉 = 2δqs3, (8)

where s3 is the direction of nucleon polarisation along the z axis, hence the FH theorem in Eq. 5
then gives:

∂E+λ
∂λ

���
λ=0
= δq,

∂E−λ
∂λ

���
λ=0
= −δq, (9)

where E+/− denotes the energy of the hadron with spin up/down in the z direction in the presence
of the tensor background field (Eq. 6) with strength λ. The energy as a function of λ is therefore
given by:

E±(λ) = E(0) ± λδq + O(λ2). (10)

We have related the change in energy of the hadron state to the transverse spin contribution from
the quark flavour q. Alternatively, due to the combination of ±λ, the spin-down state with positive
λ is equivalent to the energy shift of the spin-up state with negative λ. The nucleon isovector tensor
charge is then given by the difference between the up and down quark contributions:

gT = δu − δd. (11)

3.2 Results
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Figure 2: (a) Change in proton energy for different parameter values, with a linear fit. Calculated at
a = 0.082fm, (κl, κs) = (0.119930, 0.119930). Noting the error bars are smaller than the points displayed
and we define ∆E = Eλ − E . (b) Proton effective mass for the ratio (Eq. 12) divided by λ, for the down
quark at two different values of λ, for spin up (circle points) and spin-down (triangle points), calculated at
a = 0.082fm, (κl, κs) = (0.119930, 0.119930). The points have been offset slightly for clarity.

We consider the ratio of two correlation functions, one calculated at λ = 0 and the other at
some finite value of λ. At sufficiently large Euclidean time, we isolate the energy difference by:

Cλ(t)
C(t)

large t
= e−(Eλ−E)t

E
Eλ

|Aλ |2

|A|2
. (12)
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In Fig. 2(a) we plot the calculated nucleon energies for each value of λ. Note that while only two
positive values of λ are used, the energy shift of the spin-down state with positive λ is equivalent to
the energy shift of the spin-up state with negative λ. Negative λ values hence come from flipping
the spin of the nucleon. In Fig. 2(a) we perform a linear fit to Eq. 10 and by extracting the slope we
get the following results:

δu = 0.8266(77), (13)
δd = − 0.1945(39), (14)

renormalised at µ = 2GeV in the MS scheme [17, 18]. The Feynman-Hellmann theorem has some
advantages over standard methods. Since hadron energies are extracted from two-point functions,
control of excited state contamination in the Feynman-Hellmann is simplified compared to standard
three-point analyses. Fig. 2(b) shows the effective mass for the ratio (Eq. 12) divided by λ for the
down quark at two different values of λ, for spin-up and spin-down. The advantage of Feynman-
Hellmann can be seen in Fig. 2(b), where we see a plateau in the effective mass and a control over
excited state contamination.
The above process has been repeated for all pion masses on each of the lattice spacings as well as
for the Σ and Ξ baryons.
Now that we have the quark contributions for multiple lattice ensembles, we use a SU(3) flavour
symmetry breaking method to extrapolate results for the tensor charge to the physical quark mass.

4. Flavour Symmetry Breaking

As described above, here we keep the bare quark mass held fixed at approximately its physical
value, while systematically varying the quark masses around the SU(3) flavour symmetric point, to
eventually extrapolate results to the physical point.

When SU(3) is unbroken all octet baryon matrix elements of a given octet operator can be
expressed in terms of just two couplings f and d. However, once SU(3) is broken and wemove away
from the symmetric point we can construct quantities (Di, Fi) which are equal at the symmetric
point but differ in the case where the quark masses are different. The theory behind constructing
these quantities is described in Ref. [19]. The result of constructing these quantities leads to ‘fan’
plots, with slope parameters (ri, si) relating them. Following the method in Ref. [19] we use the
fan plots to extrapolate the tensor charge to the physical point.

4.1 Mass Dependence: ‘Fan Plots’

We hold the average quark masses, m̄, fixed, while moving away from the symmetric point.
Hence we only consider the non-singlet polynomials in the quark mass. In this section quantities
(Di, Fi) are constructed which are equal at the symmetric point and differ in the case where the
quark masses are different, we then can evaluate the the violation of SU(3) symmetry that emerges
from the difference in ms −ml. Here we introduce the notation for the matrix element transition of
B→ B′ is as follows:

AB̄′FB = 〈B
′ | JF |B〉 , (15)
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where JF is the appropriate operator from Ref. [19], and F represents the flavour structure of the
operator.

4.2 The d-fan

Following Ref. [19], we construct the following combinations of matrix elements:

D1 ≡ −(AN̄ηN + AΞ̄ηΞ) = 2d − 2r1δml,

D2 ≡ AΣ̄ηΣ = 2d + (r1 + 2
√

3r3)δml,

D4 ≡
1
√

3
(AN̄πN − AΞ̄πΞ) = 2d −

4
√

3
r3δml,

D6 ≡
1
√

6
(AN̄KΣ + AΣ̄KΞ) = 2d +

2
√

3
r3δml,

(16)

where δml = ml − m̄. The quantities Di can be calculated for each quark mass we calculated on the
lattice. For example:

D1 = − (AN̄ηN + AΞ̄ηΞ)

= −

(
1
√

6
(δup + δdp) +

1
√

6
(δuΞ − 2δsΞ)

)
,

(17)

where we introduce the notation δqB to denote the quark, q, tensor charge in the baryon, B. Here
δup, δdp, δuΞ and δsΞ are the results calculated using the FH theorem for each lattice ensemble.
An ‘average D’ can also be constructed from the diagonal amplitudes:

XD =
1
6
(D1 + 2D2 + 3D4) = 2d + O(δm2

l ), (18)

which is constant in δml up to terms O(δm2
l
).

4.3 The f -fan

Similarly another five quantities, Fi, can be constructed which all have the same value, 2 f , at
the SU(3) f symmetric point:

F1 ≡
1
√

3
(AN̄ηN − AΞ̄ηΞ) = 2 f −

2
√

3
s2δml,

F2 ≡ (AN̄πN + AΞ̄πΞ = 2 f + 4s1δml,

F3 ≡ AΣ̄πΣ = 2 f + (−2s1 +
√

3s2)δml,

F4 ≡
1
√

2
(AΣ̄KΞ − AN̄KΣ) = 2 f − 2s1δml,

F5 ≡
1
√

3
(AΛ̄KΞ − AN̄KΛ) = 2 f +

2
√

3
(
√

3s1 − s2)δml .

(19)

Again, an ‘average F’ can be calculated through:

XF =
1
6
(3F1 + F2 + 2F3) = 2 f + O(δm2

l ). (20)
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In this work, only the connected quark-line terms are computed. Quark-line disconnected terms
only show up in the r1 coefficient and rdiscon1 cancels in the case gT = δu − δd. Unlike the d-fan,
the f -fan to linear order, has no error from dropping the quark-line disconnected contributions, as
none of the ri parameters appear in the f -fan.

4.4 Results
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Figure 3: (a) The three fits D1, D2 and D4 (b) The three fits F1, F2 and F3. The vertical black dotted line
represents the physical point. Results for the three ensembles with the heaviest pion masses at a = 0.074fm
ensemble.

Fig. 3(a) shows the ‘fan’ plot D̃i = Di/XD for i = 1, 2 and 4. Here the lines correspond to
the linear fits of the Di using Eq. 16. From these linear fits the slope parameters r̃1 = r1/XD and
r̃3 = r3/XD are determined. These parameters can also predict the off-diagonal term for i = 6,
which is also shown. Similarly in Fig. 3(b) we have the ‘fan’ plot F̃i = Fi/XF for i = 1, 2 and 3,
where the lines correspond to the linear fits using Eq. 19. Similarly, the parameters s̃1 = s1/XF and
s̃2 = s2/XF are determined from the linear fits. Again, the corresponding off-diagonal terms for
i = 4, 5 were also predicted and plotted.
By forming appropriate linear combinations, we reconstruct the matrix elements in a particular
hadron:

〈p| ūΓu |p〉 = 2
√

2 f +
(√3

2
r1 −
√

2r3 +
√

2s1 −

√
3
2

s2

)
δml,

〈p| d̄Γd |p〉 =
√

2( f −
√

3d) +
(√3

2
r1 −
√

2r3 −
√

2s1 −

√
3
2

s2

)
δml,

(21)

and hence the nucleon isovector tensor charge:

gT = 〈p| ūΓu |p〉 − 〈p| d̄Γd |p〉 , (22)

for Γ = iσ34γ5. To obtain an extrapolation of gT to the physical point, we evaluate with δml → δm∗
l
.

The physical quark mass point, δm∗
l
, has been determined in Ref. [20]. A similar procedure is

followed to determine the nucleon scalar charge.
In this proceeding the above method was applied using the ensembles represented by solid points
in Fig. 1. The result for each lattice spacing was averaged, giving:

gS = 0.95(03)(14), (23)
gT = 1.014(45)(80), (24)

7
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renormalised at µ = 2GeV in the MS scheme [17, 18]. The first error in brackets is the statistical
error and the last error is systematic. As these results are preliminary we have taken the systematic
error to be half the difference between the maximum and minimum value of gT and gS . Noting
that discretisation and volume effects have not yet been quantified. These results are comparable to
those given in the FLAG Review [21].

5. Impact of Lattice Results on Phenomenology
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Figure 4: (a) Allowed regions in the εS − εT plane for the scenario gS = gT = 1 with no uncertainty. The
green band is the existing band on b0+ [4, 22]. (b) Tensor and scalar charges taken from lattice QCD with
gS = 0.95(03)(14) and gT = 1.014(45)(80).

As the long term goal of this work is to support precision tests of the Standard Model, here
we highlight the potential for improved precision from nucleon matrix elements in lattice QCD.
Following the work of Ref. [4], in Fig. 4(a) we show the constraint on the εS − εT plane assuming
perfect knowledge of the nucleon matrix elements. These current best constraints on scalar and
tensor interactions arise from 0+ → 0+ nuclear beta decays and radioactive pion decay, which
is shown by the green band [4, 22]. The neutron constraints are future projections at the 10−3

level, derived from Eq. 1 and Eq. 2, shown by the red and blue bands in Fig. 4(a). For a more
realistic constraint, including the hadronic uncertainties, in Fig. 4(b) we show the corresponding
figure including our best-estimates from the preliminary results reported here for gS and gT . When
accounting for uncertainties in these lattice QCD calculations, the boundaries on the bands in
Fig. 4(b) become wider and contraining power is lost. In order to fully utilise the constraining
power of future 10−3 experiments, understanding the lattice-QCD estimates of the tensor and scalar
charge at the level of 10% is required [4].

6. Conclusion

In this work we have presented preliminary results for the nucleon tensor charge using the
Feynman-Hellmann theorem, as well as using a flavour symmetry breakingmethod to systematically
approach the physical quark mass. The Feynman-Hellmann theorem has advantages over using
standard methods as control of excited state contamination is more simple than the standard three-
point analyses. In the flavour symmetry breaking method we used, symmetry constraints are
automatically built in order-by-order in SU(3) breaking. We have full coverage of a, mπ and
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volume meaning in future we can control those systematics to reliably deliver desired precision
goals in the future.
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