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region on the phase diagram.

The 38th International Symposium on Lattice Field Theory, LATTICE2021 26th-30th July, 2021
Zoom/Gather@Massachusetts Institute of Technology

∗Speaker

© Copyright owned by the author(s) under the terms of the Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0). https://pos.sissa.it/



P
o
S
(
L
A
T
T
I
C
E
2
0
2
1
)
5
0
3

Investigating quark confinement from the viewpoint of lattice gauge-scalar models Ryu Ikeda

1. Introduction

In the lattice gauge theory, a double-winding Wilson loop operator 𝑊 (𝐶1 ∪ 𝐶2) has been
introduced in [1] to examine the possible mechanisms for quark confinement. The double-winding
Wilson loop operator is defined as a trace of the path-ordered product of gauge link variables 𝑈ℓ
along a closed loop 𝐶 composed of two loops 𝐶1 and 𝐶2:

𝑊 (𝐶1 ∪ 𝐶2) ≡ tr

[ ∏
ℓ∈𝐶1∪𝐶2

𝑈ℓ

]
. (1)

The double-winding Wilson loop is called coplanar if the two loops𝐶1 and𝐶2 lie in the same plane,
while it is called shifted if the two loops 𝐶1 and 𝐶2 lie in planes parallel to the 𝑥-𝑡 plane, but are
displaced from one another in the transverse 𝑧-direction by distance 𝑅, and are connected by lines
running parallel to the 𝑧-axis to keep the gauge invariance. See Fig.1. Note that the double-winding
Wilson loop operators are defined as a gauge invariant operator.

(a) (b)

Figure 1: (a) a “coplanar” double-winding Wilson loop, (b) a “shifted” double-winding Wilson loop.

The area dependence of the expectation value ⟨𝑊 (𝐶1 ∪𝐶2)⟩ has been first investigated in [1] to
show that the coplanar double-winding Wilson loop average obeys the“ difference-of-areas law”
in the lattice 𝑆𝑈 (2) Yang-Mills model by using the strong coupling expansion and the numerical
simulations:

⟨𝑊 (𝐶1 ∪ 𝐶2)⟩𝑅=0 ≃ exp[−𝜎 | |𝑆1 | − |𝑆2 | |] , (2)

where 𝑆1 and 𝑆2 are respectively the minimal areas bounded by loops 𝐶1 and 𝐶2.
In the continuum 𝑆𝑈 (𝑁) Yang-Mills model, general multiple-winding Wilson loops have been

investigated in [2] to show that there is a novel“max-of-areas law”which is neither difference-of-
areas law nor sum-of-areas law for multiple-winding Wilson loop average, provided that the string
tension obeys the Casimir scaling for quarks in the higher representations.

In the lattice 𝑆𝑈 (𝑁) Yang-Mills model, it has been shown in [3] that the coplanar double-
winding Wilson loop average has the 𝑁-dependent area law falloff in the strong coupling region:
“ difference-of-areas law”for 𝑁 = 2,“max-of-areas law”for 𝑁 = 3 and“ sum-of-areas law”
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for 𝑁 ⩾ 4:

⟨𝑊 (𝐶1 ∪ 𝐶2)⟩𝑅=0 ≃


exp[−𝜎 | |𝑆1 | − |𝑆2 | |] (𝑁 = 2)
exp[−𝜎max( |𝑆1 |, |𝑆2 |)] (𝑁 = 3)
exp[−𝜎( |𝑆1 | + |𝑆2 |)] (𝑁 ⩾ 4)

. (3)

Moreover, a shifted double-winding Wilson loop average as a function of the distance 𝑅 in a
transverse direction has the long distance behavior which does not depend on 𝑁 , while the short
distance behavior depends on 𝑁 .

In our investigation in [4], we examine the center group dominance for a double winding Wilson
loop average. It has been shown in [5] that the ordinary single-winding Wilson loop average in
the non-Abelian lattice gauge theory with the gauge group 𝐺 is bounded from above by the same
Wilson loop average in the Abelian lattice gauge theory with the center gauge group 𝑍 (𝐺):

|⟨𝑊𝑅 (𝐺) (𝐶)⟩𝐺 (𝛽) | ≤ 2tr(1)⟨𝑊𝑅 (𝑍 (𝐺) ) (𝐶)⟩𝑍 (𝐺) (2dim(𝐺)𝛽) . (4)

We have extended the above statement to the double winding Wilson loop average, beyond the
case of the ordinary single-winding Wilson loop average:

|⟨𝑊𝑅 (𝐺) (𝐶1 ∪ 𝐶2)⟩𝐺 (𝛽) | ≤ 2tr(1)⟨𝑊𝑅 (𝑍 (𝐺) ) (𝐶1 ∪ 𝐶2)⟩𝑍 (𝐺) (2dim(𝐺)𝛽) . (5)

From this point of view, we introduce the character expansion to the weight 𝑒𝑆𝐺 [𝑈 ] coming
from the action and perform the group integration, in order to estimate the expectation value in the
𝑍𝑁 lattice gauge model. We evaluate the double-winding Wilson loop average up to the leading
contribution to show that the 𝑁-dependent area law falloff in the 𝑆𝑈 (𝑁) lattice gauge model can be
reproduced by using the (Abelian) 𝑍𝑁 lattice gauge model. By taking the limit 𝑁 → ∞, we show
the center group dominance for a double-winding Wilson loop average in the 𝑈 (𝑁) lattice gauge
model through the𝑈 (1) lattice gauge model.

Finally, we extend the above arguments for the lattice gauge-scalar model on the“ analytic
region”. For this purpose, we estimate the area law falloff, the string tension, and the mass gap by
using the cluster expansion.

2. Lattice 𝑍𝑁 gauge model

First, we consider the lattice 𝑍𝑁 gauge model with the coupling constant defined by 𝛽 := 1/𝑔2

on a 𝐷-dimensional lattice Λ with unit lattice spacing, which is specified by the action

𝑆𝐺 [𝑈] = 𝛽
∑
𝑝∈Λ

Re𝑈𝑝 , 𝑈𝑝 :=
∏
ℓ∈𝜕𝑝

𝑈ℓ , (6)

where ℓ labels a link, 𝑝 labels an elementary plaquette. To examine this 𝑍𝑁 gauge model analytically,
we introduce the character expansion to the weight 𝑒𝑆𝐺 [𝑈 ] to obtain the expanded form of the
expectation value of an operator ℱ:

⟨ℱ⟩Λ := 𝑍−1
Λ

∫ ∏
ℓ∈Λ

𝑑𝑈ℓ 𝑒
𝑆𝐺 [𝑈 ]ℱ = 𝑍−1

Λ

∫ ∏
ℓ∈Λ

𝑑𝑈ℓ
∏
𝑝∈Λ

𝑁−1∑
𝑛=0

𝑏𝑛 (𝛽)𝑈𝑛𝑝ℱ , (7)

𝑍Λ :=
∫ ∏

ℓ∈Λ
𝑑𝑈ℓ 𝑒

𝑆𝐺 [𝑈 ] , (8)
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where the coefficients 𝑏𝑛 (𝛽) is defined by

𝑏𝑛 (𝛽) :=
1
𝑁

∑
𝜁 ∈𝑍𝑁

𝜁−𝑛𝑒𝛽Re 𝜁 . (9)

We define 𝑐𝑛 (𝛽) := 𝑏𝑛 (𝛽)/𝑏0(𝛽). For 𝑁 = 2, 3, 4 and ∞, 𝑐1(𝛽) and 𝑐2(𝛽) are written in the
form

𝑐1(𝛽) =
𝑒𝛽 − 𝑒−𝛽
𝑒𝛽 + 𝑒−𝛽 (𝑁 = 2) , 𝑐1(𝛽) =

𝑒𝛽 − 𝑒−𝛽/2
𝑒𝛽 + 2𝑒−𝛽/2

= 𝑐2(𝛽) (𝑁 = 3) ,

𝑐1(𝛽) =
𝑒𝛽 − 𝑒−𝛽

𝑒𝛽 + 2 + 𝑒−𝛽 , 𝑐2(𝛽) =
𝑒𝛽 − 2 + 𝑒−𝛽
𝑒𝛽 + 2 + 𝑒−𝛽 (𝑁 = 4) ,

𝑐1(𝛽) =
𝐼1(𝛽)
𝐼0(𝛽)

, 𝑐2(𝛽) =
𝐼2(𝛽)
𝐼0(𝛽)

(𝑁 = ∞) . (10)

Note that 𝑏𝑁−𝑛 (𝛽) = 𝑏𝑛 (𝛽) and 0 ⩽ 𝑐𝑛 (𝛽) < 1 for 0 ⩽ 𝛽 < ∞. For 𝑁 = 2, 3, 4 and
∞ , the behavior of 𝑐1(𝛽) and 𝑐2(𝛽) as functions of 𝛽 are indicated in Fig.2. We find that
𝑐1(𝛽) ∼ O(𝛽) (𝑁 ⩾ 2) and 𝑐2(𝛽) ∼ O(𝛽2) (𝑁 ⩾ 4) for 𝛽 ≪ 1.

(a) 𝑐1 (𝛽) (𝑁 = 2, 3, 4,∞) (b) 𝑐2 (𝛽) (𝑁 = 3, 4,∞)

Figure 2: The character expansion coefficient as a function of 𝛽, (a) 𝑐1 (𝛽), (b) 𝑐2 (𝛽)

Next, we evaluate the expectation value of a coplanar double-winding Wilson loop in the lattice
𝑍𝑁 pure gauge model. The leading contribution to a coplanar double-winding Wilson loop average
is given by the tiling of a planar set of plaquettes, as shown in the Fig.3. (These result are exact for
all 𝛽 when 𝐷 = 2, while valid for 𝛽 ≪ 1 when 𝐷 > 2.)

The result of the coplanar double-winding Wilson loop average up to the leading contribution
is given by

⟨𝑊 (𝐶1 ∪ 𝐶2)⟩𝑅=0 ≃


𝑐1(𝛽) |𝑆1 |− |𝑆2 | (𝑁 = 2)
𝑐1(𝛽) |𝑆1 | (𝑁 = 3)
𝑐2(𝛽) |𝑆2 |𝑐1(𝛽) |𝑆1 |− |𝑆2 | (𝑁 ⩾ 4)

. (11)

Then we obtain the (non-zero) string tension from this result:

𝜎(𝛽) ≃ ln
1

𝑐1(𝛽)
> 0 . (12)
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(a) 𝑁 = 2 (b) 𝑁 ⩾ 3

Figure 3: A coplanar double-winding Wilson loop, (a) 𝑁 = 2 , (b) 𝑁 ⩾ 3

In the strong coupling region, this result reproduces the area law falloff in the 𝑆𝑈 (𝑁) lattice gauge
model obtained in [3]. Moreover, by taking the continuous group limit 𝑁 → ∞ ,we find that the
area law for 𝑁 ⩾ 4 persists in the𝑈 (1) lattice gauge model.

Furthermore, we also evaluate the expectation value of a shifted double-winding Wilson loop
in the lattice 𝑍𝑁 pure gauge model. The leading contribution to a shifted double-winding Wilson
loop average can be given by the 2 types of tiling by a set of plaquettes, as shown in the Fig.4.

(a) 𝑅-independent contribution (b) 𝑅-dependent contribution

Figure 4: A shifted double-winding Wilson loop, (a) 𝑅-independent contribution, (b) 𝑅-dependent contri-
bution

The result of the shifted double-winding Wilson loop average up to the leading contribution is
given by

⟨𝑊 (𝐶1 ∪ 𝐶2)⟩𝑅≠0 ≃


𝑐1(𝛽) |𝑆1 |+|𝑆2 | + 𝑐1(𝛽)2𝑅 (𝐿2+𝑇 ) · 𝑐1(𝛽) |𝑆1 |− |𝑆2 | (𝑁 = 2)
𝑐1(𝛽) |𝑆1 |+|𝑆2 | + 𝑐1(𝛽)2𝑅 (𝐿2+𝑇 ) · 𝑐1(𝛽) |𝑆1 | (𝑁 = 3)
𝑐1(𝛽) |𝑆1 |+|𝑆2 | + 𝑐1(𝛽)2𝑅 (𝐿2+𝑇 ) · 𝑐2(𝛽) |𝑆2 |𝑐1(𝛽) |𝑆1 |− |𝑆2 | (𝑁 ⩾ 4)

. (13)

This result reproduces the 𝑅-dependent behavior of the shifted double-winding Wilson loop average
in [3]. In particular, we obtain the (non-zero) mass gap from the case of 𝑆1 = 𝑆2 = 1 and 𝑅 ≫ 1 in
the above result:

Δ(𝛽) = 4 ln
1

𝑐1(𝛽)
> 0 . (14)

5



P
o
S
(
L
A
T
T
I
C
E
2
0
2
1
)
5
0
3

Investigating quark confinement from the viewpoint of lattice gauge-scalar models Ryu Ikeda

3. Lattice 𝑍𝑁 gauge-scalar theory

Next, we consider the lattice 𝑍𝑁 gauge-scalar model with the frozen scalar field norm 𝑅 for
simplicity. The action of this model with the coupling constants defined by 𝛽 := 1/𝑔2 and 𝐾 := 𝑅2

on a 𝐷-dimensional lattice Λ with unit lattice spacing is given by

𝑆[𝑈, 𝜑] = 𝛽
∑
𝑝∈Λ

Re𝑈𝑝 + 𝐾
∑
ℓ∈Λ

Re
(
𝜑𝑥𝑈ℓ𝜑

∗
𝑥+ℓ

)
, (15)

where ℓ labels a link, and 𝑝 labels an elementary plaquette. 𝑈ℓ is a 𝑍𝑁 link variable on link ℓ and
𝜑𝑥 is a 𝑍𝑁 scalar field at site 𝑥 which transforms according to the fundamental representation of
the gauge group 𝑍𝑁 .

In this model, the expectation value of an operator ℱ has the form

⟨ℱ⟩Λ := 𝑍−1
Λ

∫ ∏
ℓ∈Λ

𝑑𝑈ℓ
∏
𝑥∈Λ

𝑑𝜑𝑥 𝑒
𝑆 [𝑈,𝜑 ]ℱ = 𝑍−1

Λ

∫ ∏
ℓ∈Λ

𝑑𝑈ℓ ℎ[𝑈] 𝑒𝛽
∑

𝑝∈Λ Re 𝑈𝑝ℱ ,

𝑍Λ :=
∫ ∏

ℓ∈Λ
𝑑𝑈ℓ

∏
𝑥∈Λ

𝑑𝜑𝑥 𝑒
𝑆 [𝑈,𝜑 ] , ℎ[𝑈] :=

∫ ∏
𝑥∈Λ

𝑑𝜑𝑥 𝑒
𝐾

∑
ℓ∈Λ Re(𝜑𝑥𝑈ℓ 𝜑

∗
𝑥+ℓ ) . (16)

According to [6], we can perform the cluster expansion by introducing the new variable 𝜌𝑝
and the new measure 𝑑𝜇Λ which absorbs the scalar part ℎ[𝑈]:

⟨ℱ⟩Λ =

∫
𝑑𝜇Λ

∏
𝑝∈Λ

(
1 + 𝜌𝑝

)
ℱ∫

𝑑𝜇Λ
∏
𝑝∈Λ

(
1 + 𝜌𝑝

) =
∑

𝑄 (𝑄0 )⊂Λ

∫
𝑑𝜇Λ ℱ

∏
𝑝∈𝑄 (𝑄0 )

𝜌𝑝 ·
𝑍[𝑄 (𝑄0 )∪𝑄0 ]𝑐

𝑍Λ
, (17)

𝑑𝜇Λ :=
∏
ℓ∈Λ 𝑑𝑈ℓ ℎ[𝑈]∫ ∏
ℓ∈Λ 𝑑𝑈ℓ ℎ[𝑈]

, 𝜌𝑝 := 𝑒𝛽Re 𝑈𝑝 − 1 , (18)

where𝑄0 is the set of plaquettes which is the support of ℱ and𝑄(𝑄0) is the set of plaquettes which
is connected to 𝑄0. For the general set of plaquettes 𝑄, 𝑄𝑐 represents the complement of 𝑄. Here,
𝑍𝑄 is defined by

𝑍𝑄 :=
∑
𝑄′⊂𝑄

∫
𝑑𝜇Λ

∏
𝑝∈𝑄′

𝜌𝑝 . (19)

Note that 𝜌𝑝 ∼ O(𝛽) for 𝛽 ≪ 1. It has been showed in [7] that the confinement region
(0 ⩽ 𝛽 ≪ 1, 𝐾 ≪ 1) and the Higgs region (𝛽 ≫ 1, 𝐾𝑐 ⩽ 𝐾 < ∞) are analytically continued in a
single“ analytic region”, where the cluster expansion converges uniformly. See Fig.5.

To evaluate ℎ[𝑈], we apply the character expansion and perform the group integration. Ignoring
the contributions from multiple plaquettes, then we obtain the expression which is valid up to the
lowest plaquettes order:

ℎ[𝑈] =
∫ ∏

𝑥∈Λ
𝑑𝜑𝑥

∏
ℓ∈Λ

[
𝑏0(𝐾) + 𝑏1(𝐾)𝜑𝑥𝑈ℓ𝜑∗𝑥+ℓ + · · · + 𝑏𝑁−1(𝐾)

(
𝜑𝑥𝑈ℓ𝜑

∗
𝑥+ℓ

)𝑁−1
]

= 𝑁 |Λ |𝑏0(𝐾)𝐷 |Λ |
∏
𝑝∈Λ

𝑁−1∑
𝑛=0

𝑐𝑛 (𝐾)4𝑈𝑛𝑝 + · · · . (20)

We estimate the leading contribution to the double-winding Wilson loop average with the above
ℎ[𝑈], we also apply the character expansion for 𝜌𝑝 and evaluate the upper bound of the cluster

6
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Figure 5: The analytic region on the 𝛽-𝐾 plane

expansion by using the binominal expansion. We find that there is an correspondence between the
evaluation for the 𝑍𝑁 lattice gauge model and for the estimated upper bound for the 𝑍𝑁 lattice
gauge-scalar model:

𝑐𝑛 (𝛽) ↦→ 𝑎𝑛 (𝛽, 𝐾) :=
[
𝑏0(𝛽) − 𝑒𝛽

]
𝑐𝑛 (𝐾)4 + 𝑏1(𝛽)𝑐𝑛+1(𝐾)4 + · · · + 𝑏𝑁−1(𝛽)𝑐𝑁+𝑛−1(𝐾)4

𝑏0(𝛽) + 𝑏1(𝛽)𝑐1(𝐾)4 + · · · + 𝑏𝑁−1(𝛽)𝑐𝑁−1(𝐾)4 + 𝑐𝑛 (𝐾)4 .

( mod 𝑁 , 𝑛 = 1, · · · , 𝑁 − 1) (21)

Note that 𝑎𝑛 (𝛽, 0) = 𝑐𝑛 (𝛽) and 𝑎𝑛 (𝛽,∞) = 1. The above estimation is valid only for the values of
parameter 𝛽 and 𝐾 on the analytic region in the range where the string breaking does not occur.

By applying the same method as the above, we obtain the estimation for the coplanar double-
winding Wilson loop average:

⟨𝑊 (𝐶1 ∪ 𝐶2)⟩𝑅=0 ≲


𝑎1(𝛽, 𝐾) |𝑆1 |− |𝑆2 | (𝑁 = 2)
𝑎1(𝛽, 𝐾) |𝑆1 | (𝑁 = 3)
𝑎2(𝛽, 𝐾) |𝑆2 |𝑎1(𝛽, 𝐾) |𝑆1 |− |𝑆2 | (𝑁 ⩾ 4)

(22)

and we obtain the (non-zero) string tension from the above result:

𝜎(𝛽, 𝐾) ≳ ln
1

𝑎1(𝛽, 𝐾)
> 0 . (23)

This estimation suggests that the area law falloff in the 𝑍𝑁 lattice gauge model persists in the
𝑍𝑁 lattice gauge-scalar model and the 𝐾 → 0 limit agrees with the pure gauge case. Moreover,
for 𝜎(𝛽, 𝐾), the 𝐾 → 0 limit agrees with 𝜎(𝛽) in the 𝑍𝑁 lattice gauge model, and 𝐾 → ∞ limit
converges to 0 uniformly in 𝛽. In other words, the string tension is non-zero on the analytic region.

Additionally, we also estimate the shifted double-winding Wilson loop average:

⟨𝑊 (𝐶1 ∪ 𝐶2)⟩𝑅≠0

≲


𝑎1(𝛽, 𝐾) |𝑆1 |+|𝑆2 | + 𝑎1(𝛽, 𝐾)2𝑅 (𝐿2+𝑇 ) · 𝑎1(𝛽, 𝐾) |𝑆1 |− |𝑆2 | (𝑁 = 2)
𝑎1(𝛽, 𝐾) |𝑆1 |+|𝑆2 | + 𝑎1(𝛽, 𝐾)2𝑅 (𝐿2+𝑇 ) · 𝑎1(𝛽, 𝐾) |𝑆1 | (𝑁 = 3)
𝑎1(𝛽, 𝐾) |𝑆1 |+|𝑆2 | + 𝑎1(𝛽, 𝐾)2𝑅 (𝐿2+𝑇 ) · 𝑎2(𝛽, 𝐾) |𝑆2 |𝑎1(𝛽, 𝐾) |𝑆1 |− |𝑆2 | (𝑁 ⩾ 4)

(24)

7
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and we obtain the (non-zero) mass gap from the case of 𝑆1 = 𝑆2 = 1 and 𝑅 ≫ 1 in the above result:

Δ(𝛽, 𝐾) ≳ 4 ln
1

𝑎1(𝛽, 𝐾)
> 0 . (25)

For Δ(𝛽, 𝐾), the 𝐾 → 0 limit agrees with Δ(𝛽) in the 𝑍𝑁 lattice gauge model, and 𝐾 → ∞
limit converges to 0 uniformly in 𝛽. In other words, the mass gap is non-zero on the analytic region.

4. Conclusion

We investigated the area law falloff of the double-winding Wilson loops in the 𝑍𝑁 lattice gauge
model and 𝑍𝑁 lattice gauge-scalar model, where the gauge group is the center group of the original
𝑆𝑈 (𝑁). First, we evaluated the 𝑁-dependent area law falloff for the coplanar double-winding
Wilson loop average up to the leading contribution. We found the 𝑁-dependence of the area law
falloff in the 𝑍𝑁 lattice gauge model, which reproduces the area law falloff in the 𝑆𝑈 (𝑁) lattice
gauge model obtained in [3]. Secondly, we also checked the limit 𝑁 → ∞, the area law falloff for
𝑁 ⩾ 4 persists in the𝑈 (1) lattice gauge model. This result implies that the coplanar double-winding
Wilson loop average in the 𝑈 (𝑁) lattice gauge model and the 𝑆𝑈 (𝑁)(𝑁 ⩾ 4) lattice gauge model
obeys the same area law up to the leading contribution. Furthermore, we also considered the shifted
double-winding Wilson loop average up to the leading contributions. This result reproduces the
𝑅-dependent behavior in the 𝑆𝑈 (𝑁) lattice gauge model obtained in [3]. We obtained the (non-zero)
mass gap Δ(𝛽) from this result. Finally, we extended the above study for the 𝑍𝑁 lattice gauge-scalar
model on the analytic region. We found that the area law falloff in the 𝑍𝑁 lattice gauge model
persists in the 𝑍𝑁 lattice gauge-scalar model. We discovered that the string tension and the mass
gap are non-zero on the analytic region from this estimation.
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