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Z2 symmetry in Z2+Higgs theory
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Using Monte Carlo methods, we study Z2 symmetry in Z2+Higgs theory. In 3 + 1 space-time
dimensions, our simulation results suggest that the Z2 symmetry is realized at large number of
temporal lattice points (Nτ) in the Higgs symmetric phase. In order to see the dependence of Z2

symmetry on the number of temporal lattice points we have also studied a simple temporal one
dimensional model for a given spatial site. We show that the Z2 symmetry is observed at the level
of free energy at large Nτ limit. For this model, we also compute the density of states (DoS) for
various Nτ values, where we show that the realization of the Z2 symmetry happens at higher Nτ .
Therefore, the realization of Z2 symmetry may be due to dominance of the DoS.
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1. Introduction

At high temperatures hadrons melt into quark-gluon plasma (QGP). Theoretical studies in
Quantum Chromodynamics (QCD) show that this melting proceeds via a transition known as
confinement-deconfinement (CD) transition. In pure SU(N) gauge theories this CD transition is
described by ZN symmetry [1]. This ZN symmetry is broken spontaneously at high temperatures
but in presence of matter fields this symmetry is explicitly broken. Previous studies of ZN symmetry
in SU(N)+Higgs theories suggest that the ZN symmetry is realized in the Higgs symmetric phase at
large number of temporal lattice (Nτ) [2]. A much simpler model, coupled gauge spin theory found
to have confinement and have similar phase diagram as above theory. Therefore, one can instead
study this simpler theory to better understand the non-abelian models. Z2+Higgs model [3, 4] is
one such theory, where Z2 symmetry is explicitly broken because of the gauge Higgs coupling term.
The Polyakov loop (L), which is defined as the product of links along the temporal direction, found
to reflect the Z2 symmetry. Under Z2 gauge transformations, the Polyakov loop transforms like
magnetisation in such spin models. Therefore in this work, we compute Polyakov loop to study the
Z2 symmetry and the nature of the CD transition in Z2+Higgs theory. We consider the theory on a
3+1 dimensional lattice. Our numerical results show that this Z2 symmetry is realized in the Higgs
symmetric phase for large number of temporal lattice sites. Though the action does not have Z2
symmetry but partition function averages exhibit Z2 symmetry for large number of temporal sites.
In order to see the Z2 symmetry we have also considered a simple temporal one dimensional model
for a given spatial sites. To simplify the problem we have considered a gauge choice in which all
the gauge links are set to unity except the last one. The resulting free energy is found to have the Z2
symmetry at large number of temporal lattice sites.
The proceedings is organized in the following way. In section 2, we have described the Z2 symmetry
in Z2+Higgs theory in 3+ 1 dimensions and the simulation results are shown in sub-section 2.1 for
pure Z2 gauge theory and with Higgs field. Section 3 presents the Z2 symmetry in lower dimensions
with simulation results. Finally the conclusions are given in section 4.

2. Z2 symmetry in Z2+Higgs theory in 3 + 1 dimensions

The lattice action for the Z2+Higgs theory in 3 + 1 dimensional space (N3
s × Nτ) is given by,

S = −βg
∑
P

UP − κ
∑
n,µ̂

Φn+µ̂Un,µ̂Φn. (1)

Here the Higgs field Φn is defined on the lattice site n and Un,µ̂ is the gauge link which connects
site n and n + µ̂. The lattice site n has four components n1, n2, n3, n4 with 1 ≤ n1, n2, n3 ≤ Ns and
1 ≤ n4 ≤ Nτ . βg is the the gauge coupling constant and κ is the strength of gauge Higgs interaction.
The plaquette UP = Un,µ̂Un+µ̂,ν̂Un+ν̂,µ̂Un,ν̂, is the path ordered product of links (Un,µ̂) along an
elementary square in µ− ν plane. Here both the Un,µ̂ and Φn take values ±1. For this theory, under
the Z2 gauge transformations, the gauge links Un,µ̂ transform as,

Un,µ̂ → VnUn,µ̂V−1
n+µ̂ (2)

The matter fields (Φn), being in the fundamental representation, transform as, Φn → VnΦn. Here
Vn and Vn+µ̂ are the elements of Z2 gauge group and they can take values ±1. The Vn’s satisfy the
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following equation,
V(®n, n4 = 1) = zV(®n, n4 = Nτ). (3)

where z ∈ Z2 with z = ±1. The pure gauge part of the action, in Eq. (1), is invariant under the
Z2 gauge transformations of the gauge links i.e Z2 symmetry is always there for pure gauge theory

which is just spontaneously broken at high temperature. The Polyakov loop, L(®n) =
Nτ∏
n4=1

U(®n,n4),4̂,

is the order parameter of this theory and transforms non-trivially under Z2 gauge transformations
[5] i.e

L(®n) → zL(®n). (4)

Now since the Higgs fields are periodic, they satisfy the boundary condition, Φ(®n, n4 = 1) =
Φ(®n, n4 = Nτ). So the gauge transformed Higgs fieldsΦg satisfy the boundary condition,Φg(®n, n4 =

1) = zΦg(®n, n4 = Nτ). Since z = ±1 ∈ Z2, so the gauge transformed Higgs fields (Φg) does not
remain periodic when z = −1. Therefore, in the presence of Higgs fields (Φn) the Z2 symmetry
is broken explicitly. For κ , 0 case, under Z2, U → Ug. But Φ → Φg = VΦ is not considered
as Φg is not periodic. So S(U,Φ) , S(Ug,Φ) and these pair of configurations will not contribute
equally to the partition function. The change in the action due to Z2 “rotation” of gauge links can be
compensated by changing the Higgs field appropriately. This was numerically tested by updating
the Higgs field using Monte Carlo steps after Z2 rotating the gauge links. In the following, we study
the Z2 symmetry using Monte Carlo methods.

2.1 Simulation results

To study Z2 symmetry, we use Monte Carlo methods, in this method the gauge links Un,µ̂ and
Higgs fields Φn are updated using Metropolis algorithm [6]. The nature of CD transition has been
studied for both pure Z2 gauge theory (κ = 0) and in presence of Higgs field (κ = 0.13) for Nτ = 8.
In Fig. 1 the plot of Polyakov loop vs βg for κ = 0 clearly suggests that there is a range of βg
over which two separated states (green line) are present. This indicates that the CD transition is
first order [7]. We also plot a phase diagram in βg − κ plane, the line in Fig. 2 separates Higgs
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Figure 1: Average of L vs βg for Nτ = 8
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Figure 2: Phase diagram for Nτ = 8

symmetric phase and broken phase. Higgs transition is first order for intermediate range of βg and
crossover for smaller and larger values of βg [8, 9]. In the Higgs symmetric phase (κ < κc), it is
the entropy i.e the distribution of the interaction term dominates over the action. In this phase there
is a possibility for realization of Z2 symmetry. In the Higgs broken phase (κ > κc), i.e large κ, the
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interaction term dominates over the entropy and Z2 symmetry is badly broken in this phase. Our
study is mostly focussed on studying the CD transition and Z2 symmetry in the Higgs symmetric
phase. To observe the effect of Φ field on the CD transition, in Fig. 1 we have shown how the order
parameter behaves with βg for κ = 0.13. We can see the CD transition is still first order as two
states (yellow line) clearly appear here as well for a given range of βg. It is clear from the results
that in presence of Φ field (κ = 0.13) the range of βg over which two states appear moves towards
left of βg i.e the critical βg decreases.

In Fig. 3a-3b the histograms of the Polyakov loop H(L) is studied numerically for κ = 0.13 to
see the effect of Nτ on Z2 symmetry. This study is done in the deconfined phase for the two Polyakov
loop sectors at Nτ = 2, 8. Here L < 0 data is Z2 rotated to compare with L > 0 data. For Nτ = 2, the
histograms of the two Polyakov loop sectors do not agree with each other, which indicates that the
Z2 symmetry is explicitly broken here. But for Nτ = 8, the two distributions corresponding to the
two Polyakov loop sectors agree well which leads to realization of Z2 symmetry at higher Nτ . The
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Figure 3: (a) H(L) vs L in deconfined phase for Nτ = 2, (b) H(L) vs L in deconfined phase for Nτ = 8.
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Figure 4: (a) 〈sk4〉 vs κ for βg = 0.435 on 643 × 16 lattice, (b) χsk4 vs κ for βg = 0.435 on 643 × 16 lattice.

Z2 symmetry also depends on the phase of Higgs. The thermal average of the temporal components
of interaction, sk4 =

∑
n ΦnUn,4̂Φ

†
n+4̂

and the corresponding susceptibility χsk4 =
〈
sk2

4
〉
− 〈sk4〉2 is

studied in the deconfined phase at βg = 0.435. The results for (〈sk4〉 , χsk4) are shown in Fig. 4a-4b
for Nτ = 16. In (〈sk4〉 , χsk4) along κ-axis on the left (κ < 0.154) it is Higgs symmetric phase and
on the right (κ > 0.154) it is Higgs broken phase. In the Higgs symmetric phase, at higher Nτ , the
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κ value at which Z2 symmetry is observed increases i.e 〈sk4〉 and χsk4 for the two Polyakov loop
sectors agrees for higher κ. But in the Higgs broken phase, the Z2 symmetry can not be observed
even at higher Nτ .

3. Z2 symmetry in lower dimensions with simulation results

To understand the realization of Z2 symmetry in this theory, we consider a simple temporal
one dimensional model for a given spatial site. The gauge Higgs interaction action for this 0 + 1
dimensional model is,

S1D = −κsk4, sk4 =

Nτ∑
n=1
ΦnUnΦn+1 (5)

n denotes the temporal lattice site, i.e 1 ≤ n ≤ Nτ andΦNτ satisfies the periodic boundary condition
ΦNτ+1 = Φ1. The free energyV(L, Nτ) needs to be calculated analytically for this 0+1 dimensional
model to observe the Z2 symmetry and its dependence on Nτ . To simplify the calculation we have
considered a gauge choice in which all the gauge links are set to unity except the last one i.e Ui = 1
for i = 1, 2, ...Nτ − 1 and UNτ = L. With this gauge choice, for L = 1 this model behaves like an
one dimensional Ising model. The Z2 rotated part of it i.e L = −1 can be obtained by making the
coupling between the fields ΦNτ and Φ1 as anti-ferromagnetic. The exact partition functions for
the two Polyakov loop sectors are given by,

Z(L = 1) = λNτ

1 + λNτ

2 , Z(L = −1) = λNτ

1 − λ
Nτ

2 (6)

where λ1 = eκ + e−κ and λ2 = eκ − e−κ . The free energies corresponding to the partition function
in the large Nτ limit are given by,

V(L = 1) = V(L = −1) = −T Nτ log(λ1). (7)

It is clear that the free energies for the two Polyakov loop sectors are equal at large Nτ limit in
this 0 + 1 dimensional model. This clearly indicates that the Z2 symmetry realization happens
at large Nτ limit even in the presence of Φ. So the realization of the Z2 symmetry can be better
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Figure 5: (a) ρ(sk4) for κ = 0 in 0+1 dimensions, (b) ρ(sk4) for κ = 0 in 0+1 dimensions.

explained from the DoS as shown in Fig. 5a-5b. For smaller Nτ (Nτ = 4), the DoS or ρ(sk4) for
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the two Polyakov loop sectors are not described by a single function, which indicates that there is
no Z2 symmetry. But for large Nτ (Nτ = 16), the distribution of sk4 for the two Polyakov loop
sectors are well described by a single gaussian function f(x) whose peak is at sk4 = 0 and

√
Nτ

as standard deviation. So the peak height and the distribution of sk4 around this peak dominates
the thermodynamics at large Nτ limit where Z2 symmetry is observed even in the presence of
Higgs fields. To see the effects of nearest neighbour interaction along the spatial directions, a 1 + 1
dimensional model is considered for two given spatial sites (Ns = 2). Here sk is the total gauge
Higgs interaction action for this model. In this model the possible values of Polyakov loop L is
0,±2. The distribution of sk i.e ρ(sk) is studied for Nτ = 4, 16 in Fig. 6a-6b. For Nτ = 4, it is clear
that there is no Z2 symmetry as the distribution ρ(sk) for different Polyakov loop sectors do not
agree with each other. But for Nτ = 16, the distribution ρ(sk) is independent of L i.e the realization
of Z2 symmetry at large Nτ . So it is clear from this 1 + 1 dimensional study that the interaction
along the spatial directions does not affect the 0+1 dimensional results of Z2 symmetry realization.
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Figure 6: (a) ρ(sk) for κ = 0 in 1+1 dimensions, (b) ρ(sk) for κ = 0 in 1+1 dimensions.
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Figure 7: (a) H(sk4) for κ = 0.1, βg = 0.435 for 3 + 1 dimension, (b) H(sk4) fitted with 0 + 1 density of
states with a Boltzmann factor.

To see how well the 0 + 1 dimensional DoS describe the 3 + 1 dimensional simulation results,
the histogram of sk4 is computed in 3 + 1 dimensions for κ = 0.1, βg = 0.435 at Nτ = 16 as
shown in Fig. 7a. For this value of βg and κ the system is found to be in the deconfined and Higgs
symmetric phase. It is observed from the results that the histograms for both L > 0 and L < 0
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fall on the same function, which indicates the presence of Z2 symmetry at Nτ = 16 even in the
presence of Φ. To compare with 0 + 1 dimensional DoS here only the upper envelope of H(sk4) is
considered. It is interesting that the 3 + 1 dimensional histogram H(sk4) can be fitted with 0 + 1
dimensional DoS ρ(sk4) by using the formula H(sk4) ∝ exp(κ′sk4)ρ(sk4) as shown in Fig. 7b. Here
exp(κ′sk4) is a Boltzmann factor which needs to be included to fit the data. Also the κ′ should be
greater than κ = 0.1, because in 3+ 1 dimensions sk4 at a given spatial site have an interaction with
sk4 at nearest neighbours.

4. Conclusions

In this proceedings, we have studied Z2 symmetry and CD transition in Z2+Higgs theory. Our
simulation results in 3 + 1 dimensional model show that the Z2 symmetry is broken explicitly in
presence ofmatter fields and this symmetry is realized at large Nτ limit in theHiggs symmetric phase.
Our 0+1 dimensional results suggest that the density of states (DoS) dominate the thermodynamics
at larger Nτ resulting in realization of Z2 symmetry. The free energy calculation in one-dimension
also suggests that the free energy difference between the two Polyakov loop sectors vanishes at large
Nτ limit, which leads to realization of Z2 symmetry due to dominace of entropy. We have also seen
that the DoS of the 0 + 1 dimensional model can reproduce the 3 + 1 dimensional Monte Carlo
results.

References

[1] G. ’t Hooft, Nucl. Phys. B 138, 1-25 (1978) doi:10.1016/0550-3213(78)90153-0

[2] M. Biswal, S. Digal and P. S. Saumia, Nucl. Phys. B 910, 30-39 (2016)
doi:10.1016/j.nuclphysb.2016.06.025 [arXiv:1511.08295 [hep-lat]].

[3] M. Creutz, doi:10.1103/PhysRevD.21.1006

[4] E. H. Fradkin and S. H. Shenker, Phys. Rev. D 19, 3682-3697 (1979)
doi:10.1103/PhysRevD.19.3682

[5] B. Svetitsky and L. G. Yaffe, Nucl. Phys. B 210, 423-447 (1982) doi:10.1016/0550-
3213(82)90172-9

[6] M. Creutz, L. Jacobs and C. Rebbi, Phys. Rev. Lett. 42, 1390 (1979)
doi:10.1103/PhysRevLett.42.1390

[7] R. Balian, J. M. Drouffe and C. Itzykson, Phys. Rev. D 10, 3376 (1974)
doi:10.1103/PhysRevD.10.3376

[8] G.A. Jongeward and J. D. Stack, Phys. Rev. D 21, 3360 (1980) doi:10.1103/PhysRevD.21.3360

[9] M. Creutz, L. Jacobs and C. Rebbi, Phys. Rept. 95, 201-282 (1983) doi:10.1016/0370-
1573(83)90016-9

7


	Introduction
	Z2 symmetry in Z2+Higgs theory in 3+1 dimensions
	Simulation results

	Z2 symmetry in lower dimensions with simulation results
	Conclusions

