PROCEEDINGS

OF SCIENCE

Implementation of the conjugate gradient algorithm for
heterogeneous systems

Salvatore Cali,* William Detmold,” Grzegorz Korcyl,” Piotr Korcyl and
Phiala Shanahan“

“Center for Theoretical Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA

b Institute of Applied Computer Science, Jagiellonian University, ul. prof. Eojasiewicza 11, 30-348
Krakow, Poland

¢ Institute of Theoretical Physics, Jagiellonian University, ul. prof. Lojasiewicza 11, 30-348 Krakow,

Poland
E-mail: calis@mit.edu, wdetmold@mit.edu, grzegorz.korcyl@uj.edu.pl,

piotr.korcyl@uj.edu.pl, pshana@mit.edu

Lattice QCD calculations require significant computational effort, with the dominant fraction of
resources typically spent in the numerical inversion of the Dirac operator. One of the simplest
methods to solve such large and sparse linear systems is the conjugate gradient (CG) approach. In
this work we present an implementation of CG that can be executed on different devices, including
CPUs, GPUs, and FPGAs. This is achieved by using the SYCL/DPC++ framework, which allows
the execution of the same source code on heterogeneous systems.

MIT-CTP/5348

The 38th International Symposium on Lattice Field Theory, LATTICE2021 26th-30th July, 2021
Zoom/Gather @ Massachusetts Institute of Technology

*Speaker

© Copyright owned by the author(s) under the terms of the Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0). https://pos.sissa.it/

mailto:calis@mit.edu
mailto:wdetmold@mit.edu
mailto:grzegorz.korcyl@uj.edu.pl
mailto:piotr.korcyl@uj.edu.pl
mailto:pshana@mit.edu
https://pos.sissa.it/

Implementation of the conjugate gradient algorithm for heterogeneous systems Salvatore Cali

1. Introduction

With the diversification of computing hardware, programming languages that allow software to
be executed on any combination of devices, including Central Processing Units (CPUs), Graphics
Processing Units (GPUs) and Field Programmable Gate Arrays (FPGAs), are very appealing. Such
a framework gives freedom to the user to delegate the most demanding parts of a calculation to
a specific accelerator, depending on the problem at hand. This mitigates the costs of different
programming and optimization for each resource which is present on a supercomputer node *. This
is the motivation for the standard SYCL/DPC++ (Data Parallel C++) (see [4] for an introduction),
and in this work we explore the possibility of using this framework for lattice QCD (Quantum
Chromodynamics) applications.

One of the most common problems in computational science and linear algebra is to solve
systems of linear equations. For instance, in a typical lattice QCD calculation, most of the computing
resources are spent in finding the solution ¢ of the following linear system:

DS (n,m)yg (m) =na(n), A,Be{0,1,2}, a,f€{0,1,2,3}, (1)

where D is the Wilson-Dirac operator [5] and 7 is an arbitrary source fermion field. In Eq. (1)
A, B are color indices, «, 8 are spin indices and m, n represent two space-time coordinates within
the lattice volume. To give a concrete example of the typical sizes, a lattice with moderately
size volume V = 483 x 96 would require the linear system (1) to be solved for a matrix of size
(V x 12)*> ~ 10% x 10%. As a consequence, solving (1) using a direct approach is not feasible
and iterative methods for sparse matrices are employed to drastically reduce the computational
effort and the storage needs. Examples of iterative methods used in lattice QCD computations
are: conjugate gradient (CG), biconjugate gradient (BiCG), and the biconjugate gradient stabilized
method (BiCGSTAB). The solver performance is often improved by preconditioning, such as
Algebraic Multigrid (AMG), Incomplete Cholesky factorization (IC), Jacobi method, etc. Recently
deep learning techniques have been investigated to design preconditioning matrices for such systems
[6, 7]. For a general introduction to iterative methods and preconditioning techniques we refer to
Ref. [8].

In Ref. [9], an OpenCL implementation of the CG algorithm for Xilinx FPGAs has been
presented, showing that FPGAs can provide competitive performance for the inversion of the Dirac
operator (around 607 GFLOPs running in single precision on a Xilinx U280 Alveo card). For recent
progress in the FPGA optimized HPCG benchmark, we also refer to Ref. [10], where the authors
consider solving a simple elliptic partial differential equation discretized with a 27-point stencil on
aregular 3D grid using the CG algorithm.

The idea of this project is to explore the possibility that a single-source code can be used on
different architectures for lattice QCD applications. Therefore, in this work we consider a single-
node DPC++ implementation of the Conjugate Gradient algorithm applied to the Wilson-Dirac

!In this direction, it is worth mentioning that there exist programming models like Kokkos and Raja, which are C++
abstraction layers for performance portable parallel execution. Using specific features of these models, an algorithm
can be mapped onto existing parallel programming languages and frameworks, like CUDA, OpenMP [1], HIP [2], and
SYCL/DPC++ [3, 4].

Implementation of the conjugate gradient algorithm for heterogeneous systems Salvatore Cali

operator. This implementation is executed on different devices (CPUs, GPUs and FPGAs) and we
test the performances in each case.

2. Numerical details

For these calculations, we explore lattice volumes ranging from 4* up to 14* and focus on the
inversion of the standard Wilson-Dirac operator. The latter is known to satisfy the ys-hermiticity,
ysDys = D', so to use the CG algorithm we first solve for DD (which is hermitian by con-
struction) and then we multiply the solution by DY. In this context, the standard CG algorithm
reads

Y — o
r«—n—-Dy
p<r

while |r| > ryi, do

Told < ||
Fold
|DTp|

Yy —y+ap
rer —aDDTp
1rl
B - Fold
p<—r+pBp
end while,

a —

where ¥ represents the initial guess. To access the elements of the Wilson-Dirac operator, we
store the sparse matrix D in the so-called coordinate format, i.e. D is stored using three arrays: one
array contains the value of the non-zero elements and the other two arrays the corresponding row
and column indices. Such an approach is not optimal and does not take advantage of the diagonal
structure of D, but it is easy to implement and it is used as a starting point of this exploratory study.
Using the coordinate format, a pseudo-code for the sparse-matrix vector multiplication needed in
CG reads

for k = 1, k++, while Nyz do
out[Row[k]] = out[Row[k]] + Val[k]*in[Col[k]];
end for,

where NNz is the number of non-zero elements and in and out are the input and output vectors. Row,
Col and Val are the three arrays used to store the sparse matrix (respectively the row and column
indices and the corresponding value).

SYCL/DPC++ offers several ways to invoke a kernel and in this work we mainly use the so-
called ND-range kernels. This approach allows a kernel function to be invoked on each iteration of
the task; moreover, the programmer has full control of the parallelism and has the possibility to split
the global size of the problem into a desired number of smaller blocks, called workgroups. Each
workgroup can be interpreted as a 1, 2, or 3 dimensional block of threads and contains a set of work
items that are mapped, e.g. to a core in a GPU. The workgroup size determines the occupancy of the
compute units and to achieve optimal performances a tuning of the workgroup size is needed. Using
ND-range kernels, we have implemented in SYCL/DPC++ all the main operations that appear in

Implementation of the conjugate gradient algorithm for heterogeneous systems Salvatore Cali

the CG algorithm: the sparse-matrix vector multiplication (which represents the most demanding
part in terms of computational cost), the dot product, and vector additions/differences.
The code has been tested on three different types of hardware:

¢ CPUs: Intel(R) Xeon(R) Gold 5218 CPU @ 2.30 GHz
¢ GPUs: Nvidia GeForce RTX 2080 Ti, Nvidia A100-PCIE-40GB
¢ FPGAs: Intel Arria 10, Intel Stratix 10

and in the next section, we discuss the performance that we have obtained on these devices.

3. Results

We split this section into two parts: the first details the results obtained on CPUs and GPUs
and the latter contains some preliminary results and considerations related to SYCL/DPC++ codes
on FPGA hardware.

3.1 CPUs and GPUs

Before showing the main results of this investigation, we highlight that on GPU hardware, in
order to obtain the optimal performance, an initial tuning of the workgroup size is needed. For
example, in Figure 1 we report a study of the performance of the whole CG algorithm for a lattice
volume 14*, keeping the number of compute units fixed and varying the workgroup size for the
Nvidia A100-PCIE-40GB card. In this case we find an optimal workgroup size of 256. A similar

70 T T T T T
® _ Tuning on Nvidia A100-PCIE-40GB

60 F / \\\\.\ 4

®
0 ‘ 1 1 1 1 1

200 400 600 800 1000
workgroup size

Figure 1: Tuning of the optimal workgroup size on the Nvidia card A100-PCIE-40GB, performed for our
implementation of the CG algorithm in SYCL/DPC++.

study has been performed on Nvidia GeForce RTX 2080 Ti, for which we find it is more optimal to
use a workgroup size of 96. Once this tuning has been performed, we look at the speedup on CPUs
and GPUs as a function of the compute units, as shown in Figure 2. We observe in general a better

Implementation of the conjugate gradient algorithm for heterogeneous systems Salvatore Cali

— @ —A100-PCIE-40GB (workgroup size = 256)
— m — GeForce RTX 2080 Ti (workgroup size = 96)
Intel(R) Xeon(R) Gold 5218 CPU

50 T T T T T T -
&
_ 144 -7
40 t V—14 /// B
/// ///.
230 | T T
< o T
] - -~
O -~ K
720 - .
P
-
X
10k ’4// 7
(\‘"/
0()’ I I I 1 L L
0 10 20 30 40 50 60 70

compute units

Figure 2: Speedup study of our implementation of the CG algorithm in SYCL/DPC++, for a volume V = 14*
and with the Dirac operator stored in coordinate format. The reference point is the execution time obtained
using a single compute unit.

scaling on NVIDIA GPUs and in particular for Nvidia A100-PCIE-40GB, than for the GeForce
RTX 2080 Ti and the CPU architecture.

We also study the performances of the kernels in terms of GFlops/s, with special focus on
the most demanding part, i.e., the sparse-matrix vector multiplication. As an approximation of
the maximal theoretical performance that can be achieved on the hardware considered here, we
compare the actual performances with the expectations of the naive roofline model [11]. In this
context, the maximal attainable performance P (Flops/s) is given by

P =min(m,B8 X 1), 2)

where 7 is the peak performance, 5 (Bytes/s) is the peak bandwidth and I (Flops/Bytes) is the
operational intensity. Operations like sparse-matrix vector multiplications, dot products, and vector
additions have low operational intensities and in these cases the kernel is said to be memory-bound
(I <n/P).

In Figure 3, we show the performances that we obtain for the sparse-matrix vector multipli-
cation, along with the theoretical limit of the roofline model. As we can see from the figure, the
maximum performance we can reach is around 65 GFlops/s on Nvidia A100-PCIE-40GB and, in
general, for all the devices shown we observe that the actual performances are around 60% — 70%
of the theoretical ones.

3.2 FPGAs

The same SYCL/DPC++ code, tested on CPUs and GPUs as discussed above, has also been
compiled and executed for Intel FPGAs. We find that the same source code is able to run on FPGA

Implementation of the conjugate gradient algorithm for heterogeneous systems Salvatore Cali

—— A100-PCIE-40GB
GeForce RTX 2080 Ti
Intel(R) Xeon(R) Gold 5218 CPU

T

0

~

o,

O

S 3
S]
Q

Q

)

o]

&]
— 3
S

—

O

[a

i |
100 n n IR h 2ol n n M N n n ol
1072 10° 102

Operational intensity (flop/byte)

Figure 3: Performance study of the sparse-matrix vector multiplication on different devices (points) and
comparison with the naive roofline model (solid lines).

hardware, as we expect from the SYCL/DPC++ framework. However, we experience portability
problems and using the code as it is leads to much worse performance on the FPGAs, typically
below 1 GFlops/s. Therefore, we are currently far from realizing the idea of a single source code,
running with good performance on all devices, and we are testing alternative kernels for execution
on FPGAs.

One idea is to consider single-task kernels, implementing loop unrolling mechanisms as de-
scribed in the Intel one API Github repository https://github.com/oneapi-src/oneAPI-samples.
For kernels implementing simple functions, like vector addition, this approach (which consists of
combining single-task kernels and the compiler directive “#pragma unroll”) seems very promising,
giving rise to a significant performance improvement. However, we still face performance issues
with the sparse-matrix vector multiplication kernel, probably because of the frequent memory ac-
cesses of the algorithm when the Dirac operator is stored in coordinate format. In the future, it
could be interesting to test such kernels for a more suitable representation of the Dirac operator.

4. Conclusions and outlook

In these proceedings we have explored for the first time a SYCL/DPC++ implementation of the
CG algorithm for the Wilson-Dirac operator. This framework allows a single-source application to
be executed on different architectures, and we have tested our software on CPUs, GPUs, and FPGAs.
Using the so-called ND-range parallel kernels and the Dirac matrix stored in coordinate format,
we have seen that it is possible to obtain acceptable performances on CPUs and GPUs (around 65
GFlops/s on Nvidia A100-PCIE-40GB), that can be further improved designing algorithms more
suitable for the Dirac operator. The same code also runs on FPGA hardware, but we observe worse

https://github.com/oneapi-src/oneAPI-samples

Implementation of the conjugate gradient algorithm for heterogeneous systems Salvatore Cali

performances, generally below 1 GFlops/s. Therefore, although the idea of having a single-source
code to solve the Dirac equation running on different architectures is very appealing, at the moment
we are far from this goal. More investigations are needed and in the near future we plan to consider
different kernels and matrix representations that can speed up the execution times on FPGAs.

5. Acknowledgments

This work was supported by the Foundation for Polish Science grant no. TEAM/2017-4/39,
by the Polish Ministry for Science and Higher Education grant no. 7150/E-338/M/2018, and by the
Priority Research Area Digiworld under the program Excellence Initiative — Research University at
the Jagiellonian University as well as by the U.S. Department of Energy, Office of Science, Office
of Nuclear Physics, under grant contract numbers DE-SC0011090 and DE-SC0021006, and by
the Carl G and Shirley Sontheimer Research Fund at MIT. WD is also supported by the SciDAC4
award DE-SC0018121. We gratefully acknowledge INTEL for providing access to FPGA hardware
through the development sandbox Intel DevCloud.

References

[1] OpenMP Architecture Review Board, “The OpenMP API specification for parallel
programming, http://www.openmp.org.”

[2] “HIP: C++ Heterogeneous-Compute Interface for Portability, https://rocmdocs.amd.com.”
[3] Khronos Group, “SYCL , https://www.khronos.org/sycl/.”

[4] J. Reinders, B. Ashbaugh, J. Brodman, M. Kinsner, J. Pennycook and X. Tian, Data Parallel
C++: Mastering DPC++ for Programming of Heterogeneous Systems using C++ and
SYCL, Apress (2020).

[5] K.G. Wilson, Confinement of Quarks, Phys. Rev. D 10 (1974) 2445,

[6] B. Xiao, P. Shanahan, D. Hackett, S. Cali and Y. Lin, Neural Network Preconditioning for
U(1) Wilson-type Dirac Operators, Poster presented by Brian Xiao at Lattice 2021,
https:/findico.cern.ch/event/1006302/contributions/4380639/ [Paper in preparation] .

[7] J. Sappl, L. Seiler, M. Harders and W. Rauch, Deep learning of preconditioners for conjugate
gradient solvers in urban water related problems, CoRR abs/1906.06925 (2019)
[1906.06925].

[8] Y. Saad, Iterative Methods for Sparse Linear Systems, Other Titles in Applied Mathematics,
SIAM, second ed. (2003), 10.1137/1.9780898718003.

[9] G. Korcyl and P. Korcyl, Optimized implementation of the conjugate gradient algorithm for
FPGA-based platforms using the Dirac-Wilson operator as an example, 2001.05218.

[10] A. Zeni, K. O’Brien, M. Blott and M.D. Santambrogio, Optimized implementation of the
hpcg benchmark on reconfigurable hardware, in European Conference on Parallel
Processing, pp. 616—-630, Springer, 2021.

https://doi.org/10.1103/PhysRevD.10.2445
https://arxiv.org/abs/1906.06925
https://doi.org/10.1137/1.9780898718003
https://arxiv.org/abs/2001.05218

Implementation of the conjugate gradient algorithm for heterogeneous systems Salvatore Cali

[11] S. Williams, A. Waterman and D. Patterson, Roofline: An insightful visual performance
model for multicore architectures, Commun. ACM 52 (2009) 65.

https://doi.org/10.1145/1498765.1498785

	Introduction
	Numerical details
	Results
	CPUs and GPUs
	FPGAs

	Conclusions and outlook
	Acknowledgments

