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1. Introduction

The main task in lattice field theory calculations is to evaluate integrals of the form

〈O〉 =
∫
[Dx] O(x)𝑝(x), (1)

for some normalized multivariate target distribution 𝑝(x) = 𝑒−𝑆 (x)/𝑍 . We can approximate the inte-
gral using Markov Chain Monte Carlo (MCMC) sampling techniques. This is done by sequentially
generating a chain of configurations {x1, x2, . . . x𝑁 }, with x𝑖 occurring according to the stationary
distribution 𝑝(x), and averaging the value of the function O(x) over the chain

O =
1
𝑁

𝑁∑︁
𝑛=1
O(x𝑛). (2)

Accounting for correlations between states in the chain, the sampling variance is given by

σ2 =
𝜏int
O
𝑁

𝑁∑︁
𝑛=1

[
O(x𝑛) − O

]2
(3)

where 𝜏int
O is the integrated autocorrelation time. This quantity can be interpreted as the additional

time required for these induced correlations to become negligible.
While our main target for improved gauge field generation is full QCD, here we restrict our

work to the simpler 2D U(1) pure-gauge lattice theory. There are already many efficient alternatives
for simulating this particular theory (see e.g. [1] and references therein for a comparison), however
scaling up to full QCD remains challenging. As the preferred method for full QCD, here HMC
is our baseline for performance comparison. The method presented here can be extended to full
QCD in a relatively straightforward manner, though the cost of training and efficiency are still open
questions.

1.1 Charge Freezing

The ability to efficiently generate independent configurations is currently a major bottleneck
for lattice simulations. The 2D U(1) gauge theory considered here has sectors of topological charge
that become separated by large potential barriers for increasing 𝛽, similar to full QCD.

The theory is defined in terms of the link variables𝑈𝜇 (𝑥) = 𝑒𝑖𝑥 ∈ 𝑈 (1) with 𝑥 ∈ [−𝜋, 𝜋). Our
target distribution is given by 𝑝(x) ∝ 𝑒−𝑆𝛽 (x) , where 𝑆𝛽 (x) is the Wilson action

𝑆𝛽 (x) = 𝛽
∑︁
𝑃

1 − cos 𝑥𝑃, (4)

defined in terms of the sum of the gauge variables around the elementary plaquette, 𝑥𝑃 ≡ 𝑥𝜇 (𝑛) +
𝑥𝜈 (𝑛 + �̂�) − 𝑥𝜇 (𝑛 + �̂�) − 𝑥𝜈 (𝑛), starting at site 𝑛 of the lattice, and

∑
𝑃 denotes the sum over all such

plaquettes. For a given lattice configuration, we can calculate the topological charge 𝑄 ∈ Z using

𝑄Z =
1

2𝜋

∑︁
𝑃

b𝑥𝑃c , where b𝑥𝑃c ≡ 𝑥𝑃 − 2𝜋
⌊𝑥𝑃 + 𝜋

2𝜋

⌋
. (5)
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As 𝛽 → ∞, we see that the value of 𝑄Z remains fixed for large durations of the simulation. This
freezing can be quantitatively measured by introducing the tunneling rate (as measured between
subsequent states in our chain 𝑖 and 𝑖 + 1 )

𝛿𝑄Z , with 𝛿𝑄Z,𝑖 ≡
��𝑄Z,𝑖+1 −𝑄Z,𝑖 �� ∈ Z, (6)

which serves as a measure for how efficiently our chain is able to jump (tunnel) between sec-
tors of distinct topological charge. From Figure 1, we can see that 𝛿𝑄Z → 0 as 𝛽 → ∞.

 0                          2000                           4000

 (HMC)Qℤ

Trajectory

Figure 1: Illustration of the topological charge,
𝑄Z, freezing as 𝛽 : 2→ 7 for traditional HMC.

2. Hamiltonian Monte Carlo (HMC)

The Hamiltonian Monte Carlo algorithm be-
gins by introducing a fictitious momentum, 𝑣, for
each coordinate variable, 𝑥, typically taken from
an independent normal distribution. This allows us
to write the joint target density of the 𝜉 ≡ (x, v)
system as

𝑝(x, v) = 𝑝(x)𝑝(v) = 𝑒−𝑆𝛽 (x)𝑒−v2/2 = 𝑒−H(x,v)

(7)
whereH(𝜉) = H(x, v) = 𝑆𝛽 (x)+ 1

2v2 is the Hamil-
tonian of the system. We use the leapfrog integrator
to approximately numerically integrate Hamilton’s
equations

¤x =
𝜕H
𝜕v

, ¤v = −𝜕H
𝜕x

(8)

along iso-probability contours of H = const. from
𝜉 = (x, v) → (x∗, v∗) = 𝜉∗. The error in this inte-
gration is then corrected by a Metropolis-Hastings
(MH) accept/reject step.

2.1 HMC algorithm with Leapfrog Integrator

1. Starting from x𝑖 , resample the momentum v𝑖 ∼ N(0,1) and construct the state 𝜉 = (x𝑖 , v𝑖).

2. Generate a proposal configuration 𝜉∗ by integrating ¤𝜉 alongH = const. for 𝑁 leapfrog steps.
i.e.

𝜉 → 𝜉1 → . . .→ 𝜉𝑁 ≡ 𝜉∗, (9)

where a single leapfrog step 𝜉𝑖 → 𝜉𝑖+1 above consists of:

(a.) v′← v − 𝜀

2
𝜕x𝑆(x), (b.) x′← x + 𝜀v′, (c.) v′′← v′ − 𝜀

2
𝜕x𝑆(x). (10)

3. At the end of the trajectory, accept or reject the proposal configuration 𝜉∗ using the MH test

x𝑖+1 ←


x∗ with probability 𝐴(𝜉∗ |𝜉) ≡ min
{
1, 𝑝 ( 𝜉 ∗)

𝑝 ( 𝜉 )

}
x𝑖 with probability 1 − 𝐴(𝜉∗ |𝜉).

(11)

An illustration of this procedure can be seen in Figure 2.
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HMC

leapfrog

 

Figure 2: High-level overview of the HMC algorithm.

2.2 Issues with HMC

The HMC sampler is known to have difficulty traversing areas where the action is large. This
makes it less likely for the system to go into low probability regions, and effectively bounds the
system within potential barriers, resulting in poor performance for distributions which have multiple
isolated modes. This is particularly relevant in the case of sampling topological quantities in lattice
gauge models.

3. Generalizing HMC: LeapfrogLayers

In order to preserve the exact stationary distribution of the Markov Chain, our update must
be explicitly reversible with a tractable Jacobian determinant. To simplify notation, we introduce
two functions, Γ (Λ) to denote the v (x) updates. As in HMC, we follow the general pattern of
performing alternating updates of v and x.

We can ensure the Jacobian is simple by splitting the x update into two parts and sequentially
updating complementary subsets using a binary mask 𝑚 and its complement �̄�. As in [2], we
introduce 𝑑 ∼ U(+,−), distributed independently of both x and v, to determine the “direction” of
our update1. Here, we associate + (−) with the forward (backward) direction and note that running
sequential updates in opposite directions has the effect of inverting the update. We denote the
complete state by 𝜉 = (x, v, 𝑑), with target density given by 𝑝(𝜉) = 𝑝(x)𝑝(v)𝑝(𝑑).

Explicitly, we can write this series of updates as2

(a.) v′← Γ± [v; 𝜁v] (b.) x′← 𝑚 � x + �̄� � Λ± [𝑥�̄�; 𝜁x̄]
(c.) x′′← �̄� � x′ + 𝑚 � Λ± [𝑥𝑚; 𝜁x′] (d.) v′′← Γ± [v′, 𝜁v′]

1As indicated by the superscript ± on Γ±,Λ± in the update functions.
2Here we denote by 𝑥𝑚 = 𝑚 � x and 𝑥�̄� = �̄� � x with 1 = 𝑚 + �̄�.
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where 𝜁x̄ = [�̄� � x, v], 𝜁x = [𝑚 � x, v] (𝜁v = [x, 𝜕x𝑆(x)]) is independent of x (v) and is passed as
input to the update functions Λ± (Γ±). The acceptance probability

𝐴(𝜉∗ |𝜉) = min
{
1,

𝑝(𝜉∗)
𝑝(𝜉) J (𝜉

∗, 𝜉)
}

(12)

now includes a Jacobian factor J (𝜉∗, 𝜉) which allows the inclusion of non-symplectic update steps.
The Jacobian comes from the 𝑣 (𝑥) scaling term in the 𝑣 (𝑥) update, and is easily calculated.

1. Update :

2. Update half of  via :

3. Update (other) half of  using :

4. Half-step full  update:

Invertible NN

(a) Generalized leapfrog update.

 update

 update

(b) Illustration of the data flow through a leapfrog layer.

 

 

translationforce scaling scaling

 scalingtrainable step sizes translation scaling

(c) Detailed view of the update functions Γ+,Λ+ for the 𝑘 th leapfrog step.

Figure 3: Illustrations of the generalized leapfrog update. In Figure 3a, 3c, we denote x̄𝑘 = �̄� � x𝑘 .

3.1 Network Details

Normalizing flows [3] are an obvious choice for the structure of the update functions. These
architectures are easily invertible while maintaining a tractable Jacobian determinant, and have also
been shown to be effective at approximating complicated target distributions in high-dimensional
spaces [2–13].

We maintain separate networks Γ, Λ with identical architectures for updating v and x, respec-
tively. Without loss of generality, we describe below the details of the x update for the forward
(𝑑 = +) direction, Λ+ [𝑥�̄�; 𝜁x̄]3. For simplicity, we describe the data flow through a single leapfrog
layer, which takes as input 𝜁x̄ = (𝑥�̄�, v). For the 2D 𝑈 (1) model, the gauge links are encoded as

3To get the update for the 𝑑 = − direction, we invert the update functions and run them in the opposite order.
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[cos(𝑥), sin(𝑥)] for 𝑥 ∈ [−𝜋, 𝜋]. Explicitly4,

ℎ1 = 𝜎 (𝑤𝑥x + 𝑤𝑣v + 𝑏1) ∈ R𝑛1 (13)
ℎ2 = 𝜎 (𝑤2ℎ1 + 𝑏2) ∈ R𝑛2 (14)
...

ℎ𝑘 = 𝜎 (𝑤𝑘ℎ𝑘−1 + 𝑏𝑘−1) ∈ R𝑛𝑘 =⇒ (15)
(a.) 𝑠𝑥 = 𝜆𝑠 tanh (𝑤𝑠ℎ𝑘 + 𝑏𝑠) ; (b.) 𝑡𝑥 = 𝑤𝑡ℎ𝑘 + 𝑏𝑡 ; (c.) 𝑞𝑥 = 𝜆𝑞 tanh

(
𝑤𝑞ℎ𝑘 + 𝑏𝑞

)
;

where the outputs 𝑠𝑥 , 𝑡𝑥 , 𝑞𝑥 are of the same dimensionality as x, and 𝜆𝑠, 𝜆𝑞 are trainable parameters.
These outputs are then used to update x, as shown in Figure 3.

3.2 Training Details

Our goal in training the network is to find a sampler that efficiently jumps between different
topological charge sectors. This can be done by constructing a loss function that maximizes the
expected squared charge difference between the initial (𝜉) and proposal (𝜉∗) configuration generated
by the sampler. Explicitly, we define

L𝜃 (𝜉∗, 𝜉) = 𝐴(𝜉∗ |𝜉) (𝑄∗R −𝑄R)2 (16)

where 𝑄R = 1
2𝜋

∑
𝑃 sin 𝑥𝑃 ∈ R is a real-valued approximation of the usual (integer-valued) topo-

logical charge 𝑄Z ∈ Z. This ensures that our loss function is continuous which helps to simplify
the training procedure. For completeness, the details of an individual training step are summarized
in Sec 3.2.1.

3.2.1 Training Step

1. Resample v ∼ N(0,1), 𝑑 ∼ U(+,−), and construct initial state 𝜉 = (x, v,±)

2. Generate the proposal configuration 𝜉∗ by passing the initial state sequentially through 𝑁LF
leapfrog layers: 𝜉 → 𝜉1 → . . .→ 𝜉𝑁LF = 𝜉∗

3. Compute the Metropolis-Hastings acceptance 𝐴(𝜉∗ |𝜉) = min
{
1, 𝑝 ( 𝜉 ∗)

𝑝 ( 𝜉 ) J (𝜉
∗, 𝜉)

}
4. Evaluate the loss function L ← L𝜃 (𝜉∗, 𝜉), and back propagate gradients to update weights

5. Evaluate Metropolis-Hastings criteria and assign the next state in the chain according to

x𝑡+1 ←
{

x∗ with prob. 𝐴(𝜉∗ |𝜉)
x with prob. 1 − 𝐴(𝜉∗ |𝜉).

3.3 Annealing

As an additional tool to help improve the quality of the trained sampler, we scale the action
during the 𝑁T training steps using the target distribution 𝑝𝑡 (𝑥) ∝ 𝑒−𝛾𝑡𝑆 (𝑥) for 𝑡 = 0, 1, . . . , 𝑁T. The
scale factors, 𝛾𝑡 , monotonically increase according to an annealing schedule up to 𝛾𝑁T ≡ 1, with
|𝛾𝑖+1 − 𝛾𝑖 | � 1. For 𝛾𝑖 < 1, this helps to rescale (shrink) the energy barriers between isolated
modes, allowing the training to experience sufficient tunneling even when the final distribution is
difficult to sample.

4Here 𝜎(·) is a generic nonlinear activation function acting independently on the elements of the output vector.
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4. Results

2 3 4 5 6 7

β

101

102

103

104

105

N
L

F
·τ

in
t

HMC (avg)
Trained (avg)

Figure 4: Estimated 𝜏
QR
int vs 𝛽.

We can measure the performance
of our approach by comparing the inte-
grated autocorrelation time against tra-
ditional HMC. We see in Figure 4 that
our estimate of the integrated autocor-
relation time is much shorter for the
trained model across 𝛽 ∈ [2, 7]. To
better understand how these transfor-
mations effect the HMC update, we can
look at how various quantities change
over the course of a trajectory, as shown
in Figure 6. We see from the plot of
H − ∑

log |J | in Figure 6c that the
trained sampler artificially increases the
energy towards the middle of the trajec-
tory. This is analogous to reducing the coupling 𝛽 during the trajectory, as can be seen in Figure 7b.
In particular, we can see that for 𝛽 = 7, the value of the plaquette at in the middle of the trajectory
roughly corresponds to the expected value at 𝛽 = 3, indicated by the horizontal dashed line. This
effective reduction in the coupling constant allows our sampler to mix topological charge values in
the middle of the trajectory, before returning to the stationary distribution at the end, as can be seen
in Figure 6b. By looking at the variation in the average plaquette 〈𝑥𝑃 − 𝑥∗

𝑃
〉 over a trajectory for

models trained at multiple values of beta we are able to better understand how our sampler behaves.
This allows our trajectories to explore new regions of the target distribution which may have been
previously inaccessible.

104 105

NLF×MC Step

101

102

103

104

105

N
LF
×
τ
Q in

t

HMC

trained

β = 4
NLF=9
NLF=10
NLF=11
NLF=12
NLF=13

104 105 106

NLF×MC Step

β = 5
NLF=25
NLF=20
NLF=15
NLF=10

104 105 106

NLF×MC Step

β = 6

104 105 106

NLF×MC Step

β = 7

Figure 5: Comparison of the integrated autocorrelation time for trained models vs HMC with different
trajectory lengths, 𝑁LF, at 𝛽 = 4, 5, 6, 7 (left to right).
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0
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〈xP − x∗P 〉

9

(a) Deviation in 𝑥𝑃 .

−5 0 5
QR

(b) Topological charge mixing 𝑄R.

500 1000
H−∑ log |J |

(c) Artificial influx of energy.

Figure 6: Evolution of different quantities over a single trajectory consisting of 𝑁LF = 10 leapfrog steps.
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(a) The deviation of 𝑥𝑃 from the 𝑉 →∞ limit, 𝑥∗
𝑃
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(b) Note 𝑥∗
𝑃

is indicated by the horizontal dashed lines.

Figure 7: Plots showing how the plaquette varies over a single trajectory for models trained at 𝛽 = 3, 4, 5, 6, 7.

5. Conclusion

In this work we have proposed a generalized sampling procedure for HMC that can be used for
generating gauge configurations in the 2D 𝑈 (1) lattice model. We showed that our trained model
is capable of outperforming traditional sampling techniques across a range of inverse coupling
constants, as measured by the integrated autocorrelation time of the topological charge. By looking
at the evolution of different quantities over the generalized leapfrog trajectory, we are able to gain
insight into the mechanism driving this improved behavior.
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