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We introduce a strongly interacting lattice field theory model containing two flavors of massless
staggered fermions with two kind of interactions: (1) a lattice current-current interaction, and
(2) an on-site four-fermion interaction. At weak couplings, we expect a massless fermion phase
since our interactions become irrelevant at long distances. At strong couplings, based on previous
studies, we argue that our lattice model contains two different massive fermion phases with
differentmechanisms of fermionmass generation. In one phase, fermions becomemassive through
Spontaneous Symmetry Breaking (SSB) via the formation of a fermion bilinear condensate. In
the other phase, fermion mass arises through a more exotic mechanism without the formation of
any fermion bilinear condensate. Our lattice model is free of sign problems and can be studied
using the fermion bag algorithm. The longer term goal here is to study both these mass generation
phenomena in a single model and understand how different phases come together.
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1. Introduction

The traditional approach for massless fermions to acquire mass is through the formation of
fermion bilinear condensates. In the standard model of particle physics, this occurs through the
mechanism of spontaneous symmetry breaking (SSB), which gives masses to quarks and leptons
[1]. In the electro-weak sector of the Standard Model, the Higgs field plays a central role in
generating masses for fermions through Yukawa couplings [2]. Due to SSB of the electro-weak
symmetry, the Higgs field gets an expectation value, which gives rise to fermion bilinear mass
terms in the low energy effective theory. In the strong interaction sector, spontaneous breakdown of
chiral symmetries is responsible to create a fermion bilinear quark condensate. On the other hand,
studies of lattice Yukawamodels have found exotic phases at strong couplings [3, 4], where fermions
seem to acquire mass without breaking of any symmetries of the theory. Such phases have been
called the paramagnetic strong phase (PMS-phase) to contrast it with the phase at weak couplings
where fermions remain massless due to lack of any symmetry breaking, which is referred to as
the paramagnetic weak phase (PMW-phase). In the PMS phase, all fermion bilinear condensates
vanish, but fermions are still massive [5, 6]. The traditional spontaneously broken phase is called
the ferromagnetic phase (FM-phase).

In this work, we introduce a new lattice field theory model with four-fermion interactions to
explore all these three phases under one framework. An important feature of our model is that it is
free from sign problems and can be studied using the fermion bag algorithms without introducing
a bare mass for the fermions [7]. We focus on 2 + 1 dimensions, since the four-fermion interactions
are known to produce many interesting quantum critical points. For example, in the so-called lattice
Thirring model with a current-current interaction *, an interesting second order phase transition
between the PMW and FM phases was observed even with a single flavor of staggered fermions
[8, 9]. With two flavors of staggered fermions but with a single site four-fermion interaction * ′,
an exotic second order transition between the PMW and PMS phases was observed [9, 10]. Our
model brings together both of these transitions into a single phase diagram by introducing a model
with both interactions* and* ′, thus giving us a way to study how the two mechanisms for fermion
mass generation can come together and if there are interesting new phase transitions between them.
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Figure 1: Two possible phase diagrams of our model, containing two types of interactions* and* ′.
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The possible phase diagrams in our model are shown in Fig. 1. The left phase diagram
implies that * = 0 is a special axis where, due to enhanced symmetries, a direct second order
phase transition between PMW and PMS phase was possible. Since this generically not possible,
introduction of * introduces an intermediate phase. On the other hand, the right phase diagram
implies that the direct phase transition between the PMW and PMS phases is more robust and is
not a consequence of the special symmetries of the * = 0 axis. Other interesting questions are
related to the nature of the phase transitions between the PMW and FM phases and the PMS and
FM phases. If they are second order, we can compute the critical exponents of these transitions.
The nature of the multi-critical point where all the three phases meet is another possible subject for
investigation.

2. Model

We study a 2 + 1 dimensional lattice model containing two flavors of massless staggered
fermions interacting with each other via four-fermion interactions. The Euclidean action of our
model is given as a sum of three terms ( = (0 + (int1 + (

int
2 , where (0 denotes the free staggered

fermion action for each of the flavors D and 3 and is given by

(0 =
∑
〈G,H〉

(
D̄G"G,HDH + 3̄G"G,H3H

)
, (1)

(int1 is a nearest neighbor current-current interaction term within each flavor

(int1 = −*
∑
〈G,H〉

(
D̄GDG D̄HDH + 3̄G3G 3̄H3H

)
, (2)

and (int2 is a single site interaction between the two flavors given by

(int2 = −* ′
∑
G

(
D̄GDG 3̄G3G

)
. (3)

The matrix " is the massless staggered fermion matrix defined by

"G,H =
∑̀̂ [G, ˆ̀

2
(XG+ ˆ̀ ,H − XG− ˆ̀ ,H), (4)

where G ≡ (G0, G1, G2) denotes a lattice site on a 3 dimensional cubic lattice and ˆ̀ represent unit
vectors in the three directions. The [G, ˆ̀ are the usual staggered phase factors defined as: [G,0̂ = 1,
[G,1̂ = (−1)G0 and [G,2̂ = (−1)G0+G1 . When * ′ = 0, the action ( represents two decoupled single
flavored lattice Thirring models that has been studied earlier [8]. The coupling * ′ couples the two
flavors with each other. When * = 0, the lattice model is the same as the one that was studied in
Ref. [10].

Our lattice model has a rich internal symmetry structure. The free fermion action (0 is
symmetric under (* (4) × * (1) transformations, while (int1 is invariant under (* (2) × * (1) ×
(* (2) ×* (1) and (int2 is symmetric under (* (4) transformation. Hence, the action ( of our model
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is invariant under (* (2) × (* (2) × * (1) transformations. The observables we wish to measure
include local four-fermion condensates given by

#D =
2
+

∑
〈G,H〉

〈
D̄GDG D̄HDH

〉
, #3 =

2
+

∑
〈G,H〉

〈
3̄G3G 3̄H3H

〉
, #8 =

1
+

∑
G

〈
D̄GDG 3̄G3G

〉
, (5)

where the sum 〈G, H〉 is over nearest neighbor bonds. Similarly, fermion bilinear susceptibilities
given by

jDD =
1
+

∑
G,H

〈
D̄GDG D̄HDH

〉
, j33 =

1
+

∑
G,H

〈
3̄G3G 3̄H3H

〉
, jD3 =

1
+

∑
G,H

〈
D̄GDG 3̄H3H

〉
. (6)

The symmetries of our model imply that #D = #3 and jDD = j33 . In the above expressions the
expectation values are defined as

〈�〉 = 1
/

∫
[DD̄DDD 3̄D3] � 4−( [D̄,D,3̄,3 ] (7)

with / being the partition function. The susceptibilities jDD and jD3 diverge as + in the FM-phase
with non-zero fermion bilinear condensate but saturate in both the PMW phase and the PMS phase.

3. Fermion Bag Approach

The traditional approach to solve four-fermion models is by introducing an auxiliary field,
where we can use the Hubbard-Stratonovich transformation to convert the four-fermion coupling
into a fermion bilinear by introducing an auxiliary bosonic field [11]. Methods of gradient flow,
generalizing the Lefschetz thimble method to the lattice Thirring model at finite density, have also
been recently explored [12, 13]. In this work, we use an alternate approach called the Fermion Bag
approach [7]. The basic idea of this alternate method is to regroup fermion worldlines inside regions
denoted as fermion bags. The partition function can then be expressed as a sum over configurations
of fermion bags. However, since there are several ways to regroup fermion worldlines, the approach
is not unique and depending on the physics the regrouping must be done thoughtfully. When this is
possible, this approach can be more efficient than the auxiliary field approach.

For our model, several possible ways to identify fermion bags. The first step involves expanding
the partition function

/ =

∫
[DD̄DDD 3̄D3] 4

− ∑
G,H
(D̄G"G,HDH+3̄G"G,H3H)+*

∑
G,H
(D̄GDG D̄HDH+3̄G3G 3̄H3H)+* ′

∑
G
D̄GDG 3̄G3G

(8)

as a sum over powers of interactions, as is done in bare perturbation theory. This is done by
expanding

4*D̄GDG D̄HDH = (1 +*D̄GDG D̄HDH) =
∑

1G,H=0,1
(*D̄GDG D̄HDH)1G,H (9)

4*
′D̄GDG 3̄G3G = (1 +* ′D̄GDG 3̄G3G) =

∑
8G=0,1

(* ′D̄GDG 3̄G3G)8G . (10)
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We can introduce a new set of variables representing the interactions, which in our case would be
dimers or bonds 1G,H for nearest neighbor interactions and instantons 8G for single site interactions.
Thus, every configuration [1, 8] divides all lattice sites into either dimers [1] and [8]. Sites that do
not belong to a dimer or an instanton will be referred to as free sites. The latter does not have any
instantons or bonds. Figure 2 illustrates a configuration on a 23 lattice.

Figure 2: An illustration of a possible configuration [1, 8] on a 23 lattice. The red circles denote the instanton
sites and red links denote dimers. Dimers on D and 3 layers can occur on different sites, while instanton
positions on both the layers are same and can be visualized as bonds connecting the two layers. The black
circles denote free sites and do not contain any instantons or dimers.

One way to identify fermion bags in our model would be to group Grassmann variables that
appear at every dimer or instanton and integrate them out. This gives us factors of* or* ′ for every
bond and instanton. The remaining free sites then form their own group of sites and are integrated
out separately. The partition function can then be written as a sum over all configurations of [1, 8]
as [14],

/ =
∑
[1,8 ]

* ′#8*#D+#3det(,D) det(,3) (11)

where #8 represents the number of instantons, while #D and #3 represent the number of D-dimers
and 3-dimers in the configuration. The matrices ,D and ,3 are free staggered fermion matrix
restricted to the free sites. We call this approach strong coupling fermion bag since in this approach
the sizes of the matrices,D and,3 will be small.

An alternate way of constructing the fermion bag is to consider each configuration [1, 8] as a
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Figure 3: The variation of the average bond density (#D) and the average instanton density (#8) with
couplings* and* ′ for a lattice of linear dimension 2.

term in the perturbative expansion and write the partition function as

/ =
∑
[1,8 ]

*
′#8*#D+#3

{ ∫
[DD̄DD]4

− ∑
G,H
(D̄G"G,HDH)

D̄I1DI1 ...D̄I:DI:

}
×

{ ∫
[D 3̄D3]4

− ∑
G,H
(3̄G"G,H3H)

3̄F13F1 ...3̄Fℓ 3Fℓ

}
. (12)

In this expression : = 2#D + #8 and ℓ = 2#3 + #8 . The terms in the brackets in Eq. (12) can be
computed using Wick’s theorem and summed over all contractions. This yields a simple result

/ = [det(")]2
∑
[1,8 ]

* ′#8*#D+#3det(�D) det(�3) (13)

where �D and �3 are : × : and ℓ × ℓ propagator matrix between the sites I1, ...I: and F1, ..., Fℓ

respectively. We call this approach the weak coupling fermion bag, since the sizes of the matrices
�D and �3 will be small at weak couplings. For the efficiency of the fermion bag algorithm, it is
often useful to switch between the two fermion bag formulations.

4. Results

We are currently developing the fermion bag Monte Carlo algorithm to explore the phase
diagram of our model. In order to confirm the correctness of the algorithm, it would be useful to
compare the results with exact calculations. Here we show the results from these exact calculations
on a 23 lattice size with anti-periodic boundary conditions in all three directions. The behavior of
the observables #D and #8 as a function of the couplings* and* ′ are shown in Fig. 3. These four-
point condensates are smooth functions, increasing from 0 for small couplings, and approaching 1
for large couplings.

To explore the phase diagram of our model further, it is more natural to study the susceptibilities
jDD and j33 . These are plotted as functions of the couplings * and * ′ in Fig. 4. In the context of
phase transitions, a peak in the plot of the susceptibilities as a function of the coupling for a fixed
system size, can indicate a phase transition in the system. However, we must also show that the

6



P
o
S
(
L
A
T
T
I
C
E
2
0
2
1
)
5
1
0

Three-dimensional Gross-Neveu model with two flavors of staggered fermions Sandip Maiti

Figure 4: The behavior of jDD and jD3 as a function of the couplings* and* ′.

peak actually diverges in the thermodynamic limit to confirm the existence of the phase transition.
As can be seen in Fig. 4, both susceptibilities show peaks. It is important to point out the fact that
for very large couplings both susceptibilities as we have defined it becomes small and is related to
the fact that the lattice is being filled with bonds and instantons. This however does not imply that
the condensate vanishes. To measure the true condensate, we will need to study the dependence on
the system size. We expect this to be dramatically different, at large U and small * ′ as compared
to large * ′ and small *. The former will show that jDD will grow as a function of the system size
while the latter will saturate. These can be inferred from previous studies.

5. Conclusions and Future work

We have introduced a three-dimensional Gross-Neveumodel with two couplings* and* ′ such
that two mechanisms of fermion mass generation are possible and can compete. We have shown
some exact results for 23 lattice and already see some rudimentary features of the phase diagram.
In order to understand the physics of our model in more detail, we plan to extend our results for
larger lattice size using the fermion bag algorithm. We hope to explore the phase diagram of our
model, and study the nature of the phase transitions. If some of these are second order, we plan to
calculate the critical exponents.
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