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We present our recent high precision calculations [1, 2] of the first moment of nucleon isovec-
tor polarized, unpolarized and transversity distributions, i.e., momentum fraction, helicity and
transversity moment, respectively. We use the standard method for the calculation of these mo-
ments (via matrix elements of twist two operators), and carry out a detailed analysis of the sources
of systematic uncertainty, in particular of excited state contributions. Our calculations have been
performed using two different lattice setups (Clover-on-HISQ and Clover-on-Clover), each with
several ensembles. They give consistent results that are in agreement with global fit analyses.
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Ensemble 𝑎 𝑀𝜋 𝐿3 × 𝑇 𝑀𝜋𝐿 𝜏/𝑎 𝑁𝑐𝑜𝑛 𝑓

ID (fm) (MeV)
𝑎15𝑚310 0.1510(20) 320.6(4.3) 163 × 48 3.93 {5, 6, 7, 8, 9} 1917
𝑎12𝑚310 0.1207(11) 310.2(2.8) 243 × 64 4.55 {8, 10, 12, 14} 1013
𝑎12𝑚220 0.1184(09) 227.9(1.9) 323 × 64 4.38 {8, 10, 12, 14} 1156
𝑎12𝑚220𝐿 0.1189(09) 227.6(1.7) 403 × 64 5.49 {8, 10, 12, 14} 1000
𝑎09𝑚310 0.0888(08) 313.0(2.8) 323 × 96 4.51 {10, 12, 14, 16} 2263
𝑎09𝑚220 0.0872(07) 225.9(1.8) 483 × 96 4.79 {10, 12, 14, 16} 960
𝑎09𝑚130 0.0871(06) 138.1(1.0) 643 × 96 3.90 {10, 12, 14, 16} 1041
𝑎06𝑚310𝑊 0.0582(04) 319.6(2.2) 483 × 144 4.52 {18, 20, 22, 24} 500
𝑎06𝑚135 0.0570(01) 135.6(1.4) 963 × 192 3.7 {16, 18, 20, 22} 751

Table 1: Lattice parameters of the 2+ 1+ 1-flavor HISQ ensembles generated by the MILC collaboration [3]
and analyzed in this study. We give the lattice spacing 𝑎, pion mass 𝑀𝜋 , lattice size 𝐿3 × 𝑇 , the values of
source-sink separation 𝜏 simulated, and the number of configurations analyzed.

1. Introduction

In the realm of QCD, among the key quantities to quantitatively characterize the rich and
complex structure of hadrons are a number of universal, non-perturbative distribution functions.
These are, parton distribution functions (PDFs), transverse momentum dependent PDFs (TMDs),
generalized parton distributions (GPDs) and distribution amplitudes (DAs). For many years, there
have been steady efforts to obtain these distributions both from experiments and theory. On the
theoretical side, information on the moments of the distribution functions can be obtained via first
principle Lattice QCD calculations. Subsequent to the proposal by Ji in 2013 [4], there have also
been significant progress towards accessing the distributions themselves on the lattice [5].

The distributions are not measured directly in experiments, and phenomenological analyses
including different theoretical inputs are needed to extract them from experimental data. In cases
where both lattice results and phenomenological analyses of experimental data (global fits) exist,
one can compare them to validate the control over systematics in the lattice calculations, and on
the other hand provide a check on the phenomenological process used to extract these observables
from experimental data [6, 7]. In other cases, lattice results are predictions.

Even for the best studied quantity on the lattice, the isovector momentum fraction ⟨𝑥⟩𝑢−𝑑 , the
data had large statistical and systematic uncertainties prior to 2018 [6]. Here we present high-
precision lattice calculations for the isovector momentum fraction, helicity moment ⟨𝑥⟩Δ𝑢−Δ𝑑 and
transversity moment ⟨𝑥⟩𝛿𝑢−𝛿𝑑 using two different lattice setups and controlling the sources of
systematic uncertainties. Our study shows, that the lattice data for these three moments are now of
quality comparable to that for nucleon charges (zeroth moments).

2. Lattice set up

We present our calculations of the three moments using two different lattice setups: (i) the
Clover-on-HISQ calculation (PNDME 20) published in [1] was performed using nine HISQ ensem-
bles generated by the MILC collaboration [3], whose parameters are summarized in Table 1. They
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Ensemble 𝑎 𝑀𝜋 𝐿3 × 𝑇 𝑀𝜋𝐿 𝜏/𝑎 𝑁𝑐𝑜𝑛 𝑓

ID (fm) (MeV)

𝑎127𝑚285 0.127(2) 285(3) 323 × 96 5.85 {8, 10, 12, 14} 2001
𝑎094𝑚270 0.094(1) 270(3) 323 × 64 4.11 {10, 12, 14, 16, 18} 1464
𝑎094𝑚270𝐿 0.094(1) 269(3) 483 × 128 6.16 {10, 12, 14, 16} 4501
𝑎091𝑚170 0.091(1) 169(2) 483 × 96 3.74 {8, 10, 12, 14, 16} 4015
𝑎091𝑚170𝐿 0.091(1) 169(2) 643 × 128 5.08 {8, 10, 12, 14, 16} 1533

𝑎073𝑚270 0.0728(8) 272(3) 483 × 128 4.8 {11, 13, 15, 17, 19} 4477
𝑎071𝑚170 0.0707(8) 167(2) 723 × 192 4.26 {15, 17, 19, 21} 2100
𝑎071𝑚130 0.0707(8) 127(1) 963 × 192 4.36 {13, 15, 17, 19, 21} 440
𝑎056𝑚280 0.056(1) 280(5) 643 × 192 5.09 {18, 21, 24, 27, 30} 1723

Table 2: Lattice parameters of the 2 + 1-flavor clover ensembles generated by the JLab/W&M/LANL/MIT
collaboration and analyzed in this study. We give the lattice spacing 𝑎, pion mass 𝑀𝜋 , lattice size 𝐿3 × 𝑇 ,
the values of source-sink separation 𝜏 simulated, and the number of configurations analyzed.

cover a range of lattice spacings (0.057 ≤ 𝑎 ≤ 0.15) fm, pion masses (135 ≤ 𝑀𝜋 ≤ 310) MeV and
lattice sizes (3.7 ≤ 𝑀𝜋𝐿 ≤ 5.5). For more details of the lattice methodology, the strategies for the
calculations and the analyses see [1] and references therein.

(ii) The Clover-on-Clover calculation, published in [2] (NME 20), used seven Clover ensembles
generated by the JLab/W&M/LANL/MIT collaboration [8]. Here (NME 21) we include two new
ensembles, one at physical 𝑀𝜋 and the other at smaller lattice spacing 𝑎 = 0.056 fm which gives us
better control over chiral and continuum extrapolations, respectively. Note that the data for the two
new ensembles are preliminary and 𝑎071𝑚130 is statistics limited. The parameters of these Clover
ensembles are summarized in Table 2. They also cover a range of lattice spacings (0.056 ≤ 𝑎 ≤
0.127) fm, pion masses (127 ≤ 𝑀𝜋 ≤ 285) MeV and lattice sizes (3.74 ≤ 𝑀𝜋𝐿 ≤ 5.85).

We construct the correlation functions needed to calculate the matrix elements using Wilson-
clover fermions for both lattice setups. The Clover-on-HISQ formulation is non-unitary and can
suffer from the problem of exceptional configurations at small, but a priori unknown, quark masses.
However, we have not found evidence for such exceptional configurations on any of the nine
ensembles analyzed in this work.

3. Lattice correlators and moments

The light quark operators (𝑞 ∈ {𝑢, 𝑑}) used to calculate the moments are:

⟨𝑥⟩𝑢−𝑑 : O44
𝑉3 = 𝑞(𝛾4←→𝐷 4 − 1

3
𝜸 · ←→D )𝜏3𝑞 (1)

⟨𝑥⟩Δ𝑢−Δ𝑑 : O34
𝐴3 = 𝑞𝛾 {3

←→
𝐷 4}𝛾5𝜏3𝑞 (2)

⟨𝑥⟩𝛿𝑢−𝛿𝑑 : O124
𝑇3 = 𝑞𝜎 [1{2]

←→
𝐷 4}𝜏3𝑞 . (3)
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From their matrix elements within the ground state of the nucleon, the moments are given by:

⟨0|O44
𝑉3 |0⟩ = −𝑀𝑁 ⟨𝑥⟩𝑢−𝑑 , (4)

⟨0|O34
𝐴3 |0⟩ = − 𝑖𝑀𝑁

2
⟨𝑥⟩Δ𝑢−Δ𝑑 , (5)

⟨0|O124
𝑇3 |0⟩ = − 𝑖𝑀𝑁

2
⟨𝑥⟩𝛿𝑢−𝛿𝑑 , (6)

where 𝑀𝑁 is the nucleon mass. The nucleon interpolating operator N used is

N = 𝜖𝑎𝑏𝑐
[
𝑞𝑎𝑇1 (𝑥)𝐶𝛾

5 (1 ± 𝛾4)
2

𝑞𝑏2 (𝑥)
]
𝑞𝑐1 (𝑥) , (7)

where {𝑎, 𝑏, 𝑐} are color indices, 𝑞1, 𝑞2 ∈ {𝑢, 𝑑} and 𝐶 = 𝛾0𝛾2 is the charge conjugation matrix.
The nonrelativistic projection (1 ± 𝛾4)/2 is inserted to improve the signal, with the plus and minus
signs applied to the forward and backward propagation in Euclidean time, respectively. At zero
momentum, this operator couples only to the spin 1

2 states. The zero momentum two-point and
three-point nucleon correlation functions are defined as

𝑪2𝑝𝑡
𝛼𝛽
(𝜏) =

∑︁
𝒙

⟨0|N𝛼 (𝜏, 𝒙)N 𝛽 (0, 0) |0⟩ (8)

𝑪3𝑝𝑡
O,𝛼𝛽 (𝜏, 𝑡) =

∑︁
𝒙′,𝒙

⟨0|N𝛼 (𝜏, 𝒙)O(𝑡, 𝒙′)N 𝛽 (0, 0) |0⟩ (9)

where 𝛼, 𝛽 are spin indices. The source is placed at time slice 0, the sink is at 𝜏 and the one-
derivative operators inserted at time slice 𝑡. Data have been accumulated for the values of 𝜏 specified
in Tables 1 and 2, and, in each case, for all intermediate times 0 ≤ 𝑡 ≤ 𝜏.

4. Controlling the excited state contamination

A major challenge to precision results is removing the contribution of excited states in the
three-point functions. These occur because the lattice nucleon interpolating operator, couples to the
nucleon, all its excitations and to multi particle states with the same quantum numbers. The strategy
to remove these artifacts are described in Refs. [1, 2]: reduce ESC by using smeared sources in the
generation of quark propagators and then fit the data at multiple source-sink separations 𝜏 using
the spectral decomposition of the correlation functions keeping as many excited states as possible
without over-parameterizing the fits. The spectral decomposition of the zero-momentum two-point
function, 𝐶2pt, truncated at four states, is given by

𝐶2pt(𝜏) =
3∑︁
𝑖=0
|A𝑖 |2𝑒−𝑀𝑖 𝜏 . (10)

We fit the data over the largest time range, {𝜏𝑚𝑖𝑛–𝜏𝑚𝑎𝑥}, allowed by statistics, i.e., by the stability of
the covariance matrix, to extract the masses 𝑀𝑖 and the amplitudesA𝑖 for the creation/annihilation
of the four states by the interpolating operator. We perform two types of four-state fits. In the fit
denoted {4}, we use the empirical Bayesian technique described in the Ref. [9] to stabilize the three
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excited-state parameters. In the second fit, denoted {4𝑁 𝜋}, we use a normally distributed prior for
𝑀1, centered at the lower of the non-interacting energy of 𝑁 (−1)𝜋(1) or the 𝑁 (0)𝜋(0)𝜋(0) state,
and with a width of 0.04–0.05 in lattice units.

In the fits to the two-point functions, the {4} and {4𝑁 𝜋} strategies cannot be distinguished
on the basis of the 𝜒2/dof. In fact, the full range of 𝑀1 values between the two estimates, from
{4} and {4𝑁 𝜋}, are viable on the basis of 𝜒2/dof alone. The same is true of the values for 𝑀2,
indicating a large flat region in parameter space. Because of this large region of possible values for
the excited-state masses, 𝑀𝑖 , we carry out the full analysis with three strategies that use different
estimates of 𝑀1 and investigate the sensitivity of the results on them.

The analysis of the three-point functions, 𝐶3pt
O , is performed retaining up to three states |𝑖⟩ in

the spectral decomposition:

𝐶
3pt
O (𝜏; 𝑡) =

2∑︁
𝑖, 𝑗=0
|A𝑖 | |A 𝑗 |⟨𝑖 |O| 𝑗⟩𝑒−𝑀𝑖 𝑡−𝑀 𝑗 (𝜏−𝑡) . (11)

To remove the ESC and extract the desired ground-state matrix element, ⟨0|O|0⟩, we make a
simultaneous fit in 𝑡 and 𝜏. In choosing the set of points, {𝑡, 𝜏}, to include in the final fit, we attempt
to balance statistical and systematic errors. First, we neglect 𝑡skip points next to the source and sink
in the fits as these have the largest ESC. Next, noting that the data at smaller 𝜏 have exponentially
smaller errors but larger ESC, we pick the largest three values of 𝜏 for all seven ensembles. Since
errors in the data grow with 𝜏, we partially compensate for the larger weight given to smaller 𝜏 data
by choosing 𝑡skip to be the same for all 𝜏, i.e., by including increasingly more 𝑡 points with larger
𝜏, the weight of the larger 𝜏 data points is increased. Most of our analysis uses a 3∗-fit, which is a
three-state fit with the term containing ⟨2|O|2⟩ set to zero, as it is undetermined and its inclusion
results in an overparameterization based on the Akaike information criteria [10].

To investigate the sensitivity of ⟨0|O|0⟩ to possible values of 𝑀𝑖 we carry out the full analysis
with three strategies using the mnemonic {𝑚, 𝑛} to denote an 𝑚-state fit to the two-point function
and an 𝑛-state fit to the three-point function. Figure 1 shows an example of difference in estimates
from the three fit strategies for ⟨𝑥⟩𝑢−𝑑 from 𝑎073𝑚270.

• {4, 3∗}: The spectrum is taken from a {4} state fit to the two-point function using Eq. (10)
and then a {3∗} fit is made to the three-point function using Eq. (11). Both fits are made
within a single jackknife loop. This is the standard strategy, which assumes that the same set
of states are dominant in the two- and three-point functions.

• {4𝑁 𝜋 , 3∗}: The excited state spectrum is taken from a four-state fit to the two-point function
but with a narrow prior for the first excited state mass taken to be the energy of a non-
interacting 𝑁 ( 𝒑 = 1)𝜋( 𝒑 = −1) state (or 𝑁 (0)𝜋(0)𝜋(0) that has roughly the same energy).
This spectrum is then used in a {3∗} fit to the three-point function. This variant of the {4, 3∗}
strategy assumes that the lowest of the theoretically allowed tower of 𝑁𝜋 (or 𝑁𝜋𝜋) states
contributes.

• {4, 2free}: The only parameters taken from the {4} state fit are the ground state amplitudeA0

and mass 𝑀0, whose determination is robust. In the two-state fit to the three-point function,
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the mass of the first excited state, 𝑀1, is left as a free parameter, ie, the most important
determinant of ESC, 𝑀1, is obtained from the fit to the three-point function. The relative
limitation of the {4, 2free} strategy is that, with the current data, we can only make two-state
fits to the three-point functions, i.e., include only one excited state.

10 5 0 5 10
t 2

0.10

0.15

0.20

0.25

0.30

a073m270 : x = 0.170(6), 2/31 = 1.03 
=
= 19

= 17
= 15

= 13
= 11

10 5 0 5 10
t 2

0.10

0.15

0.20

0.25

0.30

a073m270 : x = 0.168(4), 2/31 = 1.03 
=
= 19

= 17
= 15

= 13
= 11

10 5 0 5 10
t 2

0.10

0.15

0.20

0.25

0.30

a073m270 : x = 0.180(3), 2/32 = 1.56 
=
= 19

= 17
= 15

= 13
= 11

Figure 1: Data of the ratio 𝐶
3𝑝𝑡
O (𝜏,𝑡)
𝐶2𝑝𝑡 (𝜏) scaled with the kinematic factors to give ⟨𝑥⟩𝑢−𝑑 for the ensemble

𝑎073𝑚270. The three panels show fits to the data with the largest three values of 𝜏 using three strategies:
{4, 3∗} (left panel), {4𝑁 𝜋 , 3∗} (middle panel) and {4, 2free} (right panel). The fits are performed using data
for the largest three values of 𝜏. For each 𝜏 , the line in the same color as the data points is the result of the fit
used to obtain the ground state matrix element. The blue band in each plot indicate the value of the moment
obtained via the ground state matrix element from the fit.

5. Chiral, continuum and finite volume (CCFV) extrapolations

To obtain the final, physical results at 𝑀𝜋 = 135 MeV, 𝑀𝜋𝐿 → ∞ and 𝑎 = 0, we make a
simultaneous CCFV fit of data renormalized in the 𝑀𝑆 scheme at 𝜇 = 2 GeV keeping only the
leading correction term in each variable:

⟨𝑥⟩(𝑀𝜋 ; 𝑎; 𝐿) = 𝑐1 + 𝑐2𝑎 + 𝑐3𝑀
2
𝜋 + 𝑐4

𝑀2
𝜋 𝑒−𝑀𝜋𝐿

√
𝑀𝜋𝐿

. (12)

Note that, in both lattice setups the discretization errors start with a term linear in 𝑎. The results
of the CCFV fits in case of PNDME 20 show that the finite volume correction term, 𝑐4, is not
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Figure 2: Clover-on-HISQ data for ⟨𝑥⟩𝑢−𝑑 obtained via the fit strategy {4, 3∗}, renormalized in the 𝑀𝑆

scheme at 𝜇 = 2 GeV, for all nine ensembles (PNDME 20). The blue band shows the CC fit result. In the left
panel the fit is evaluated at 𝑀𝜋 = 135 MeV and plotted versus 𝑎, while in the right panel it shows the result
versus 𝑀2

𝜋 evaluated at 𝑎 = 0.
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Figure 3: Clover-on-Clover data for ⟨𝑥⟩𝑢−𝑑 obtained via the fit strategy {4, 3∗}, renormalized in the 𝑀𝑆

scheme at 𝜇 = 2 GeV, for seven ensembles ensembles (first row, NME 20) and for nine ensembles (second
row, NME 21). The pink band shows the CCFV fit result. (Left) result evaluated at 𝑀𝜋 = 135 MeV and
𝑀𝜋𝐿 = ∞ and plotted versus 𝑎. (Middle) result plotted versus 𝑀2

𝜋 and evaluated at 𝑎 = 0 and 𝑀𝜋𝐿 = ∞.
(Right) result plotted versus 𝑀𝜋𝐿 and evaluated at 𝑎 = 0 and 𝑀𝜋 = 135 MeV

constrained. Therefore, for PNDME 20, we use CC fits (i.e., with 𝑐4 = 0 in Eq. 12) to obtain the
final results. As an example, in Fig. 2 we present the PNDME 20 CC fit to ⟨𝑥⟩𝑢−𝑑 obtained via
{4, 3∗} fit strategy.

The NME 20 and 21 data are sensitive to the finite volume corrections. Therefore, we use
CCFV fits to obtain the final results as shown in Fig. 3 for ⟨𝑥⟩𝑢−𝑑 obtained via {4, 3∗} fit strategy.

In both lattice formulations and for all three moments, we find only a small positive slope with
respect to both the lattice spacing and 𝑀𝜋 . The main difference between the PNDME 20 and the
NME 20/NME 21 results is the ∼ 10% decrease due to the finite volume correction in the latter.

6. Results, comparison with the world data and conclusions

Moment PNDME 20 NME 20 NME 21
⟨𝑥⟩𝑢−𝑑 0.173(14)(07) 0.155(17)(20) 0.156(12)(20)
⟨𝑥⟩Δ𝑢−Δ𝑑 0.213(15)(22) 0.183(14)(20) 0.185(12)(20)
⟨𝑥⟩𝛿𝑢−𝛿𝑑 0.208(19)(24) 0.220(18)(20) 0.209(15)(20)

Table 3: Final results for the moments.

In Table 3 we compare PNDME 20, NME 20 and NME 21 results. We choose the results from
CCFV/CC fits of the moments obtained via {4, 3∗} fit strategy of the correlators. The first number
inside brackets is overall statistical error. We will also take half the spread in results between
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Figure 4: A comparison of results from lattice QCD calculations with dynamical fermions and global fits
(below the black line). The left panel compares results for the momentum fraction, the middle for the helicity
moment, and the right for the transversity moment. Our NME 21 result (preliminary) is also shown as the
blue band to facilitate comparison.

{4𝑁 𝜋 , 3∗} and the {4, 2free} fit strategies as a second uncertainty (the second number inside the
brackets) to account for possible unresolved bias from incomplete control over ESC.

Our NME results are consistent with the PNDME 20 results. This is a valuable check of the
PNDME 20 calculation that uses the non-unitary clover-on-HISQ lattice formulation. For ⟨𝑥⟩𝑢−𝑑
and ⟨𝑥⟩Δ𝑢−Δ𝑑 the NME results are ≈ 1𝜎 smaller than the PNDME. A large part of the difference
is due to the finite-volume correction in the NME results. There is reduction of statistical errors
for all three quantities on going from NME 20 to NME 21. This is due to adding data from
two new ensembles 𝑎071𝑚130 and 𝑎056𝑚280 in NME 21 which gives larger ranges in both the
lattice-spacing and the pion mass in the CCFV fits.

An updated comparison of our results with other lattice calculations and phenomenological
global fit estimates is given in Fig. 4. They are in good agreement with other recent lattice results
by ETMC [11, 12], Mainz [13] and 𝜒QCD [14] collaborations. Our estimate for the momentum
fraction is in good agreement with most global fit estimates but has much larger error. The three
estimates for the helicity moment from global fits have a large spread, and our estimate is consistent
with the smaller error estimates. Lattice estimates for the transversity moment are a prediction.
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