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We report on our computation of the pion transition form factor Fπ→γ∗γ∗ from twisted mass lattice
QCD in order to determine the numerically dominant light pseudoscalar pole contribution in the
hadronic light-by-light scattering contribution to the anomalous magnetic moment of the muon
aµ = (g − 2)µ. The pion transition form factor is computed directly at the physical point. We
present first results for our estimate of the pion-pole contribution with kinematic setup for the pion
at rest.
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1. Introduction

In this project we aim to compute the pseudoscalar transition form factors FP→γ∗γ∗ from
twisted mass lattice QCD for the three pseudoscalar states P = π0, η and η′ in order to determine
the corresponding pseudoscalar pole contributions in the hadronic light-by-light (HLbL) scattering
contribution to the anomalous magnetic moment of the muon aµ = (g − 2)µ. Our computation
is done on two ensembles with the pion mass at its physical value. For our calculations we are
using twisted-mass clover-improved lattice QCD at maximal twist, so that we have automatic O(a)-
improvement in place. The generation of the two ensembles was done in the context of the Extended
Twisted Mass Collaboration (ETMC) where the Nf = 2 + 1 + 1 simulations include the two mass-
degenerate light u- and d-quark flavours at their physical quark-mass values and the heavier s- and
c-quark flavours at quark masses close to their physical values. At the moment, the analysis is done
on two physical point ensembles at two different lattice spacings as decribed in Table 1. For further
details on the simulations we refer to Refs. [1, 2].

ensemble L3 · T/a4 mπ [MeV] a [fm] L [fm] mπ · L
cB072.64 643 · 128 136.8(6) 0.082 5.22 3.6
cC060.80 803 · 160 134.2(5) 0.069 5.55 3.8

Table 1: Description of ensembles used for the analysis presented in these proceedings.

The assumption of hadronic light-by-light scattering being dominated by single pseudoscalar
meson exchange can be used to calculate the correspondingly leading pseudoscalar pole contribu-
tions aP-pole

µ to themuon anomly at next-to-leading order (NLO), cf. Figure 1. The pole contributions
are given by a three-dimensional integral derived in Ref. [3]. It takes the form

aP-pole
µ =

(α
π

)3
∫ ∞

0
dQ1

∫ ∞

0
dQ2

∫ +1

−1
dτ̃[

w1(Q1,Q2, τ̃)FP→γ∗γ∗(−Q2
1,−(Q1 +Q2)

2)FP→γ∗γ∗(−Q2
2, 0)

+ w2(Q1,Q2, τ̃)FP→γ∗γ∗(−Q2
1,−Q2

2)FP→γ∗γ∗(−(Q1 +Q2)
2, 0)

]
, (1)

Figure 1: Pseudoscalar pole contribution to hadronic light-by-light scattering in the muon (g−2)µ. Adapted
from Ref. [4].
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where the nonperturbative information is encapsulated in the transition form factors FP→γ∗γ∗ of
the pseudoscalar mesons P = π0, η, η′ to two virtual photons. The evaluation of the integrands in
Eq. (1) requires the knowledge of the transition form factors (TFFs) at space-like momenta, both in
the single and double virtual case. It turns out that these TFFs can indeed be obtained from a QCD
calculation on a Euclidean lattice. The relevant kinematic region is determined by the positive
weight functions w1 and w2 which depend on the absolute values of the photon momenta, the
kinematic variable τ̃ = cos θ ∈ [−1,+1], with θ being the angle between the photon momenta, and
the mass of the pseudoscalar meson P. In these proceedings we focus on the pion-pole contribution
for which first lattice results were obtained in [4, 5].

2. The transition form factors on the lattice

In the continuum Minkowski space the TFFs are defined via the matrix element of two elec-
tromagnetic currents jµ and jν and the pseudoscalar state P with four-momentum p,

Mµν(p, q1) = i
∫

d4x eiq1x
〈
0
��T{ jµ(x) jν(0)}�� P(p)

〉
= εµναβqα1 qβ2FP→γ∗γ∗(q

2
1, q

2
2) .

For virtualities below the threshold for hadron production, the transition form factors can be
analytically continued to Euclidean space, cf. Ref. [4], and are therefore accessible on the lattice.
The Euclidean matrix element ME

µν(p, q1) can be calculated via an integral over the temporal
separation τ = ti − t f of the two currents,

ME
µν =

∫ ∞

−∞

dτ eω1τ Ãµν(τ), in0 ME
µν(p, q1) = Mµν(p, q1). (2)

Here, n0 denotes the number of temporal indices in Mµν, q1 and q2 are the photon virtualities,
p = q1 + q2 is the on-shell pseudoscalar momentum, ω1 is a real-valued free parameter with
q1 = (ω1, ®q1), and

Ãµν(τ) =
〈
0
��T{ jµ( ®q1, τ) jν( ®p − ®q1, 0)}

�� P(p)
〉
.

On the lattice this function is recovered from the three-point function

Cµν(τ, tP) = a6
∑
®x,®z

〈 jµ(®x, ti) jν(®0, t f )P†(®z, t0)ei ®p®z〉e−i ®x ®q1 ≡ 〈 jµ jνP†〉 , (3)

via
Ãµν(τ) =

2EP

ZP
lim

tP→∞
eEP (t f −t0)Cµν(τ, tP) , (4)

where tP = min(t f − t0, ti − t0) is the minimal temporal separation between the pseudoscalar
and the two vector currents. The pseudoscalar meson energy EP and the factors ZP are deter-
mined through appropriate pseudoscalar two-point functions. Before integrating over τ, one can
contract the Lorentz structure of the matrix elements. The function Ãµν with one or more tem-
poral indices vanishes for the pseudocalar at rest, and the spatial components can be written as
Ã(τ) = im−1

P εi jk
®qi
1
®q2
1

Ãjk(τ), and analogously for C(τ).

3



P
o
S
(
L
A
T
T
I
C
E
2
0
2
1
)
5
1
9

Pion-pole contribution to HLbL from TM lattice QCD S. Burri

jµ

tt0 tfti

P jν

jµ

tt0 tfti

P jν

jµ

tt0
tfti

P jν

jµ

tt0 tfti

P jν

jµ

tt0 tfti

P jν

Figure 2: Contributions to the three-point function Cµν: Connected (top left), vector current disconnected
(top middle and right), pseudoscalar disconnected (bottom left) and fully disconnected (bottom right).

The amplitude Cµν contains connected, vector current disconnected, pseudoscalar discon-
nected, and fully disconnected diagrams as illustrated in Figure 2. For Wilson fermions the
pseudoscalar disconnected diagrams on the second line are zero for P = π0 by the exact cancel-
lation between the up and down quark loops. For P = η and η′ this is not the case and these
disconnected diagrams must be included. This is so also for P = π0 in the twisted mass Wil-
son fermion discretization, where the diagrams on the second line are nonzero due to the broken
isospin symmetry. Since this isospin breaking is a lattice artefact, we consider an isospin rotation
π0 → −i · (π+ + π−) with a corresponding transformation of the isospin decomposed light quark
electromagnetic currents j0,0

µ → j0,0
µ and j1,0

µ → i · ( j1,+
µ − j1,−

µ ), which allows us to relate the neutral
and charged pion form factors. The difference between the two at finite lattice spacing is a lattice
artefact of order O(a2).
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Figure 3: Range of photon virtualities spanned in our
calculation on the ensemble cB072.64.

A further simplification is achieved by re-
stricting the considerations to the kinematic sit-
uation where the pseudoscalar is at rest, i.e.,
®p = ®0. Then, the expressions for the photon
virtualities simplify to

q2
1 = ω

2
1 − ®q

2
1 , q2

2 = (mP − ω1)
2 − ®q2

1 . (5)

As a consequence, for each choice of spatial
momentum ®q1 one obtains a continuous set of
combinations of q1 and q2 which form an orbit
in the (q2

1, q
2
2)-plane as illustrated in Figure 3

for mP set to the physical pion mass. There we
show the orbits for all the momenta calculated
on the ensemble cB072.64. From Eqs. (5) it
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becomes clear that the shape of the orbits becomes squeezed along the diagonal as the pseudoscalar
mass mP is lowered. This feature makes it particularly challenging to extract single virtual pion
transition form factors Fπ→γ∗γ∗(q2

1, 0) = Fπ→γ∗γ∗(0, q
2
2) at large momenta q2

i on physical point
ensembles if one uses only pions at rest. However, the problem can be circumvented by using
moving frames, cf. [5]. For P = η and η′ the problem is less eminent due to the larger values of the
meson masses mP.

3. First results at the physical point

After this theoretical discussion we are now in the position to present first results for the
transition form factor Fπ→γ∗γ∗ of the pion obtained for the ensembles cB072.64 and cC060.80 at
the physical point. First, we illustrate the quality of our data with sample results for the amplitude
Ã(τ) defined in Eq. (4). In Figure 4 we show the full amplitude and separately the fully connected
and the vector current disconnected contributions for two of the momentum orbits on the ensemble
cB072.64. The vector current disconnected amplitude is multiplied by a factor −50 in order
to facilitate comparison with the connected contribution and the full amplitude. The examples

60 40 20 0 20 40 60
/a

0.005

0.000

0.005

0.010

0.015

0.020
conn. + disc.
conn.
-50 × disc.

60 40 20 0 20 40 60
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0.002

0.000

0.002

0.004

0.006

0.008

0.010

0.012
conn. + disc.
conn.
-50 × disc.

Figure 4: Amplitude Ã(τ) for momentum orbit | ®q2 | = 10 (2π/L)2 (left) and | ®q2 | = 29 (2π/L)2 on cB072.64.
Shown in orange is the full contribution to Ã(τ), in blue the connected contribution and in green the vector
current disconnected contribution multiplied by -50.

illustrate that the disconnected contribution is very small, but significant. More generally, we find
that in the peak region it is suppressed w.r.t. the connected contribution by a factor between 50
and 200 depending on the orbit. We also conclude from our data that the statistical error on the
disconnected contribution is sufficiently well under control on the physical point ensembles.

To obtain the form factor we need to integrate Ã(τ) weighted by the factor exp(ω1τ) over the
whole temporal axis, cf. Eq. 2. In order to control the statistical error in the exponentially enhanced
tail and to be able to integrate up to τ → ∞, we proceed as follows. First, we fit the lattice data by
a model function Ã(fit)(τ) in a range τmin ≤ |τ | ≤ τmax, and then we replace the lattice data Ã(latt.)(τ)

by the data from the fit for τ > τcut,

Fπ→γ∗γ∗(q2
1, q

2
2) =

∫ τcut

−∞

dτ Ã(latt.)(τ)eω1τ +

∫ ∞

τcut

dτ Ã(fit)(τ)eω1τ . (6)

Following Ref. [4] we use both a vector meson dominance (VMD) model and the lowest meson
dominance (LMD) model to estimate the model dependence. We perform global fully correlated

5
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fits, i.e., we simultaneously fit all momentum orbits in the range τmin ≤ |τ | ≤ τmax and take into
account the correlation between all fitted data. In Figure 5 we illustrate the procedure by showing
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0.04

0.06

0.08

A(
)e

1

fit
fiterr.
data
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Figure 5: Integrand Ã(τ)eω1τ on cB072.64 with LMD model fits for momentum orbit | ®q2 | = 2 (2π/L)2.
Diagonal kinematicswith aω1 = amπ/2 ≈ 0.0284 (left), single virtual kinematicswith aω1 = a| ®q1 | ≈ 0.1388
(right).

the result for the integrand Ã(τ)eω1τ of a typical global fit to Ã(τ) in the range 9 ≤ |τ/a| ≤ 12 with
χ2/dof = 1.20 on the ensemble cB072.64 using the LMD model. The plot on the left shows the
resulting integrand for the diagonal kinematics q2

1 = q2
2 , while the plot on the right shows it for the

single virtual kinematics with q2
1 = 0. The transition form factors obtained from the integration

over the lattice data and the fitted data depend of course on the choice of the model, the fit range and
the value τcut. The variations resulting from these choices are carried through all further analysis
steps and are included in the systematic error estimate of the final result for aµ. The typical values
of τcut we use in our analysis result in a data content of well above 98% for most of the TFFs.
However, for TFFs with (close to) single virtual kinematics, the data content is sometimes also less
for higher momentum orbits. Here, the data content is defined as the fraction of the TFF coming
from the first term in Eq. (6).

Once the form factors are obtained in the whole kinematic region as described by the yield plot
in Figure 3, we parameterize them using a modified z-expansion of the form

P(Q2
1,Q

2
2) · Fπγ∗γ∗(−Q2

1,−Q2
2) =

N∑
m,n=0

cnm
(
zn1 − (−1)N+n+1 n

N + 1
zN+1
1

) (
zm2 − (−1)N+m+1 m

N + 1
zN+1
2

)
(7)

where zk = z(Q2
k
) are modified four-momenta and P(Q2

1,Q
2
2) is a polynomial, see Ref. [5] and

references therein for further details. We determine the coefficients cnm by fitting Eq. (7) to samples
of Fπ→γ∗γ∗(−Q2

1,−Q2
2) in the (Q2

1,Q
2
2)-plane. The sample points are given by a set of fixed values

of Q2
2/Q

2
1 on all momentum orbits, and we ensure that all included data points pass a certain

threshold for the data content. In Figure 6 we show the result of such a (fully correlated) fit with
χ2/dof = 0.96 usingQ2

2/Q
2
1 = 1.0, 0.59, 0.0, and N = 2 to the TFFs obtained from a global LMD fit

with {τmin/a, τmax/a} = {9, 12}, χ2/dof = 1.20, τcut/a = 20 and a threshold of 90% on the ensemble
cB072.64. As a crosscheck for the quality of the fit we also show the data for three other ratios

6



P
o
S
(
L
A
T
T
I
C
E
2
0
2
1
)
5
1
9

Pion-pole contribution to HLbL from TM lattice QCD S. Burri

0.00

0.01

0.02

0.03

0.04

a
Q

2 1
P

(Q
2 1,

Q
2 2)

Q2
2/Q2

1 =  1.00

0.00

0.01

0.02

0.03

0.04

Q2
2/Q2

1 =  0.88

0.00

0.01

0.02

0.03

0.04

Q2
2/Q2

1 =  0.78

0.0 0.1 0.2 0.3
a2 Q2

1

0.00

0.01

0.02

0.03

0.04

0.05

a
Q

2 1
P

(Q
2 1,

Q
2 2)

Q2
2/Q2

1 =  0.59

0.0 0.1 0.2 0.3
a2 Q2

1

0.00

0.05

0.10

0.15

Q2
2/Q2

1 =  0.10

0.0 0.1 0.2 0.3
a2 Q2

1

0.00

0.05

0.10

0.15

0.20

0.25

Q2
2/Q2

1 =  0.00

Figure 6: Illustration of transition form factors and their parameterization using the fitted modified z-
expansion. Only the data coloured in green is included in the fit.

Q2
2/Q

2
1 = 0.88, 0.78, and 0.10 not included in the fit together with the fitted modified z-expansion.

The variations resulting from varying the sampling of Fπ→γ∗γ∗(−Q2
1,−Q2

2) in the momentum plane
are also included in the systematic error estimate of the final result for aµ.

Finally, having the parameterization of the TFFs at hand, we can use it in the three-dimensional
integral representation in Eq. (1) and calculate the bare pion-pole contribution aπ-pole, bareµ to the
anomalous magnetic moment. In Figure 7 we show the results for aπ-pole, bareµ on the two ensembles
at the physical point as a function of τcut/a. Each data point is a weighted average of O(100)
results from different fits for Ã using VMD or LMD with different fit ranges and different fits
using the modified z-expansion on different samplings in the momentum plane. The weighted
average is obtained using weights inspired by the Akaike information criterion (AIC). The error
therefore includes the variation w.r.t. the fitting of Ã and the sampling of Fπ→γ∗γ∗ in the (Q2

1,Q
2
2)-

plane. The variation of the final result with τcut indicates a residual dependence on the specific
procedure of variance reduction in the large-τ tail of Ã. In principle, this dependence is removed
in the limit τcut → ∞, but if τcut is chosen too large the z-expansion fits become unstable and
hence the final result unreliable. Our results in Figure 7 indicate that choosing τcut ∈ [1.8, 2.1]
fm seems a safe choice and we perform a further AIC averaging over this range. This yields the
bare results shown in Table 2 for the two physical point ensembles, with total errors in the 5%-8%
range. Since we use local iso-vector and iso-vector axial current operators in our amplitude Cµν,
instead of conserved (point-split) current operators, we need to renormalize the bare results by the
corresponding renormalization constants. Preliminary values are available for our setup from a
calculation within ETMC.
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Figure 7: AIC averaged data for a range of τcut/a for the ensembles cB072.64 (left) and cC060.80 (right).

aπ−pole, bareµ · 10−11 threshold 90% threshold 95%
cB072.64 208.9(10.1)(7.8)[12.8] 204.5(14.2)(6.3)[15.6]
cC060.80 188.9(9.9)(2.7)[10.2] 187.9(9.0)(1.9)[9.2]

Table 2: Bare results using the AIC procedure on the two physical point ensembles. The first error is the
statistical error, the second the systematic error and the third the total error.

4. Conclusion and outlook

After applying the renormalization factors and performing a rough estimate of the continuum
limit, we obtain a preliminary value aπ−poleµ = 53.7(2.6)(3.1)[4.0] · 10−11. This can be compared
to the recent lattice result aπ−poleµ = 59.7(3.6) · 10−11 from Ref. [5] and the dispersive result
aπ−poleµ = 63.0+2.7

−2.1 ·10−11 from Refs. [6–8], and we find agreement within 1 to 2 standard deviations.
Finalizing the analysis might result in a slightly different central value, however, we expect that the
relative total error will stay below the 10% level. We plan to analyze a third physical point ensemble
at a finer lattice spacing which will result in a more robust continuum limit extrapolation. We also
plan to calculate the form factors for the pion in a moving frame and to perform the analysis of the
η- and η′-pole contributions, and to include ensembles with larger pion masses.
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