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Proton decay is a major prediction of Grand-Unified Theories (GUT) and its observation would
indicate baryon number violation that is required for baryogenesis. Many decades of searching for
proton decay have constrained its rate and ruled out some of the simplest GUTmodels. Apart from
the baryon number-violating interactions, this rate also depends on transition amplitudes between
the proton and mesons or leptons produced in the decay, which are matrix elements of three-quark
operators. We report nonperturbative calculation of these matrix elements for the most studied
two-body decay channels into a meson and antilepton done on a lattice with physical light and
strange quark masses and lattice spacings a ≈ 0.14 and 0.20 fm. We perform nonperturbative
renormalization and excited state analysis to control associated systematic effects. Our results
largely agree with previous lattice calculations done with heavier quark masses and thus remove
ambiguity in ruling out some simple GUT theories due to quark mass dependence of hadron
structure.
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Introduction Proton decay is a |∆B | = 1 baryon number-violating process that has been
predicted by Grand Unification Theories (GUT)[1–3] but has not been observed so far. Discovery
of proton decaymay potentially fulfil one of the three prerequisites to explain the Baryon asymmetry
in theUniverse [4]1, and also demand extension of the StandardModel to accomodate baryon number
violation [6], potentially involving supersymmetry [7, 8].

Some of the most important proton decay channels are into an (anti)lepton and one or more
mesons. At the lowest order, interactions leading to such decay are local operators [9, 10],

Leff =
∑
I

CIOI + h.c. , OI = ε
abc (q̄aCPχI qb)( ¯̀CPχ′I qc) , (1)

where chirality projectors Pχ(′)=R,L =
1±γ5

2 and the Wilson coefficients CI depend on the specifics
of an underlying unified theory. For small m ¯̀ � mN , the p→ Π ¯̀ partial decay width is

Γ(p→ Π ¯̀) =
mN

32π
[
1 −

( mΠ
mN

)2]2 ���
∑
I

CIW I
¯̀
���
2
, (2)

where Π = π, K is a meson and ¯̀ = e+, ν̄, µ+ is a lepton in the final state. The proton decay
amplitudes W ¯̀ ≈ W I

0 + O(m`/mN ) · W I
1 depend only on the quark component of the operators

OI (1). From dimensional analysis, W I
` ∝ Λ

2
QCD and the proton decay rate is suppressed as

Γ ∝ |cI |2(ΛQCD/Λ(GUT))4, where cI are dimensionless GUT couplings and Λ(GUT) is the relevant
scale. The decay form factors W I

0,1(Q2) are defined as

v̄C`α(~q)〈Π(~p) |Oχχ
′

α (q) |N (~k)〉 =
(
v̄C` (~q) Pχ′

[
W O

0 (Q2) −
i/q

mN
W O

1 (Q2)
]
uN (~k)

)
(3)

and must be determined at the decay kinematical point Q2 = −(EN − EΠ)2 + (~k − ~p)2 = −m2
` . They

depend on nonberturbative quark dynamics and have to be evaluated in ab initio QCD calculations.

Table 1: Parameters of lattice ensembles with I-DSDR gauge and (zMobius) Domain Wall fermion actions.

L3
x × Lt a−1 [GeV] β amπ amK mπL Ncfg Nexact Napprox

243 × 64 1.023(2) 1.633 0.1378(7) 0.5004(25) 3.31 140 1 32
323 × 64 1.378(5) 1.75 0.1008(5) 0.3543(6) 3.25 112 1 32

We perform our QCD calculation on a lattice using physical values of quarks with chirally-
symmetric action (see Tab. 1 and Ref. [11] for details). For full description of the contents in this
report, see Ref. [12]. To make such expensive calculations affordable we (1) use “zMobius” fermion
action, (2) use pre-calculated multigrid eigenvectors [13] to accelerate propagator calculation, and
(3) employ all-mode-averaging sampling. In the latter, we evaluate 32 approximate samples per
configuration with quark propagators computed employing truncated Conjugate-Gradient (s quark)
combined with deflation (u, d quarks), as well as one exact sample to correct for bias in the
approximate samples.

1 There are viable alternatives such as leptogenesis [5].
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Hadron spectrum First step of the analysis is to extract the meson (pion and kaon) and proton
masses and energies as well as normalization of their operators from their two-point functions

CΠΠ (~k, t) =
∑
~x

e−i~p~x 〈JΠ (x) J†
Π

(0)〉 , (4)

CN N̄
+ = Tr

[ 1 + γ4
2

CN N̄
]
, CN N̄

αβ (~k, t) =
∑
~x

e−i~k~x 〈Nα(x) N̄β (0)〉 , (5)

where JΠ = d̄γ5u, s̄γ5u, and s̄γ5d for π+, K+, and K0, respectively, and N = (uTCγ5d)u for
the proton. In Figure 1, we show their effective energies and 2-state fit results compared to the
continuum dispersion relations extrapolated from their masses determined on the lattice.
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Figure 1: Two-state fits to pion (left), kaon (center), and nucleon (right) two-point correlation functions
shown as effective energies (top) and ground-state dispersion relations (bottom) on the 24ID ensemble. The
continuum dispersion relations E2(p) = E2(0)+ p2 for ground-state energies are shown with horizontal lines
in the top panels and with dashed lines in the bottom panels.

Renormalization of proton decay operators is computed nonperturbatively using interme-
diate lattice momentum scheme similar to the traditional MOM or SMOM schemes. Momenta of
the three quarks can be arranged in various combinations. In previous calculations (e.g., Ref. [14]),
all three quarks carried the same momentum p, and thus the operator carried larger momentum
(3p). Such large difference in scales is challenging for our coarse lattices and may cause significant
perturbative contributions, therefore we have adopted a scheme to which we refer as SYM3q, in
which the quark momenta p, k, r add up to zero operator momentum q = (p+k+r) = 0. Conversion
from SYM3q to the MS scheme to O(α3

S
) precision has been perturbatively computed in Ref. [15].

As commonly done, we compute amputated correlators ΛX (p, k, r) of each of the three-quark
operator OX with external plane-wave quark fields in the Landau gauge, and project onto the
tree-level spin-color structure of operator OY . The renormalization matrix is then defined as

Z−3/2
q Z3q

ZX Λ
3q
XY = δZY . (6)
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Figure 2: Quark mass and scale dependence of the mixing Green’s functions Λ(ud)s
AA,PP

and Λ(ud)d
PP,SS

(left) and
renormalization of quark-bilinear operators (right) on the 24ID ensemble.
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Figure 3: Diagonal conversion factors from SYM3q/SMOMγµ to MS(2GeV) scheme, in which perturbative
running with intermediate scale |p| has been removed. In absence of discretization, nonperturbative, and
higher-order perturbative effects, it should be independent of |p|. The green bands indicate averages over the
same momentum range on both ensembles, which is necessary for consistent continuum extrapolation.

We observe that our calculations respect chiral symmetry and mixing between chiral symmetry
partners (scalar and pseudoscalar) is negligible. We study quark mass dependence and SU (3) f -
symmetric chiral limit of our renormalization factors, and observe that the mixing increases with
the quark mass as expected. However, as shown in Fig. 2(left), the mixing becomes negligible
already when the quark mass is set to the physical value of mu,d. The magnitude of this mixing is
comparable to the perturbative uncertainty that has only sub-percent effect and is therefore ignored.

The quark field renormalization factor Zq is evaluated from renormalization of quark bilinears
in the SMOMγµ scheme in particular the axial charge2. In Figure 2(right), we show quark-bilinear

2 Unlike in the traditional SMOM scheme, the Green’s function of the axial-vector current is projected as ΛA =
1
48 TrΛγµγ5γ5γµ .
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renormalization factors. The lattice renormalization factors are calculated as

Z lat
X,Y ( |p|) =

[
ZAΛA(|p|)

]3/2 [
Λ

3q (|p|)
]−1
X,Y , (7)

where ZA is computed elsewhere using (partially) conserved axial current.
It is difficult to satisfy the SYM3q scheme condition for the lattice quark momenta, so we allow

deviations from the strict continuum equality p2 = k2 = r2 up to 5%. In addition, to minimize
discretization effects, we select mostly diagonal-aligned momenta using criterion

∑
µ p4

µ(∑
µ p2

µ )2
≤ 0.4.

The final scale-independent conversion factors are shown in Fig. 3 as functions of the intermediate
scale momentum |p|. We select final renormalization factors as averages over the same window of
momenta 1.8 ≤ |p| ≤ 2.1 GeV for both ensembles in order to perform consistent continuum extrap-
olations. The variance within this window indicates systematic uncertainty in our nonperturbative
conversion factors, which is negligible compared to other uncertainties.
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Figure 4: Two-state fits of renormalized N → π correlation functions for form factor W0 at the three
kinematic points on the 24ID lattices with a ≈ 0.20 fm. The data points show the ratios (9), the color bands
show 2-state fits, and the grey bands show the ground-state fit results. All data are normalized in the final
MS scheme. The fit quality (p-value) is estimated using the Hoteling distribution.

Matrix elements are extracted from the three-point functions

CΠONαβ (~p, ~q; t2, t1) =
∑
~y,~z

e−i~p~y−i~q~z+i~k~x〈JΠ (~y, x4 + t2) Oχχ
′

α (~z, x4 + t1) N̄β (x)〉 , (8)

where the spin indices α, β are the lepton and proton polarization and the 4-momentum transfer
q = (k − p) is the lepton “recoil” that must satisfy the decay kinematics q2 = m2

` . We use the
two spin projections CΠON

P
= Tr[PCΠON ] with P = 1

2 (1 + γ4) and 1
2 (1 + γ4)(~γ · q), which yield

linearly independent combinations of the proton decay form factors W0,1 [12]. Ground-state matrix
elements are obtained from the correlation functions (8) using 2-state fits as well, with state energies
and overlaps determined in the spectrum analysis. We compare that to the alternative “ratio” method

RO
P

(~p, ~q; t2, t1) =

√
ZΠ (~p)ZN (~k)CΠO N̄

P
(~p, ~q; t2, t1)

CΠΠ (~p, t2 − t1) CN N̄
+ (~k, t1)

, (9)
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Figure 5: (Left) Momentum interpolation and continuum extrapolation of form factor W0 for select six
channels. (Right) Comparison of our results (“NEW”) for the proton decay amplitudes W0(0) computed
directly (filled symbols) and indirectly (open symbols) to previous determinations [16–18]. All results are
renormalized to the MS(2 GeV) scheme.

where R|t1≈t2/2 is constructed to converge to the ground-state matrix element at large t2. The
agreement between the fits, the ratios, and the ground-state results in the pion channel shown in
Fig. 4 indicates that excited-state effects are negligible. These effects are estimated as differences
between the central values of the fits and the ratios with the largest t2 = 10a. Due to discrete
values of momenta in the finite volume, we calculate the matrix elements at three kinematical
points and perform linear interpolation in Q2 (see Fig. 5, left), and then perform a2 extrapolation to
the continuum limit. The systematic uncertainty of the continuum extrapolation is estimated as the
difference between the extrapolated and the finer-ensemble (32ID) values. This estimate is likely
conservative, but it is difficult to assess it more precisely with only two coarse lattice spacings.

Discussion Our final results are presented in Fig. 5 (right). We find reasonable agreement with
earlier calculations that employed heavier quark masses[14], quenched [17] or chiral symmetry-
breaking fermion action [18]. We also compare our results to estimates based on tree-level chiral
perturbation theory using lattice nucleon-to-vacuum decay constants, and find that the latter yield
larger values than the direct calculation. We do not observe any suppression as suggested in
Ref. [19], confirming earlier limits on some the GUT models. Although conservatively estimated
uncertainties in our results sufficiently small [12], they can be further improved by performing
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calculations at finer lattice spacings, larger volume, and with more statistics.
Our precision is mostly limited by statistical uncertainty and the conservative estimates of

discretization errors. While the latter are most likely overestimated, imroving this uncertainty
will require calculations with finer lattice spacings. On the other hand, our results with even
overestimated uncertainties are sufficient for our main conclusion about the lack of suppression
above. Another potential source of uncertainty is the finite volume. In our calculations, mπL ≈ 3.3,
which is low compared to the current state-of-the-art calculations. While it is very unlikely that the
main conclusion of our work is affected by finite volume effects, this may have to be addressed in
subsequent calcuations.
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