
P
o
S
(
L
A
T
T
I
C
E
2
0
2
1
)
5
3
0

Quantum Field Theories with Tensor Renormalization
Group

Shinichiro Akiyama,𝑎,∗ Yoshinobu Kuramashi𝑏,∗ and Yusuke Yoshimura𝑏,∗
𝑎Graduate School of Pure and Applied Sciences,
University of Tsukuba, Tsukuba, Ibaraki 305-8571, Japan
𝑏Center for Computational Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan
E-mail: akiyama@het.ph.tsukuba.ac.jp, kuramasi@het.ph.tsukuba.ac.jp,
yoshimur@ccs.tsukuba.ac.jp

We report recent progress on the application of the tensor renormalization group (TRG) to quantum
field theories pursued by the Tsukuba group. We explain how to treat the scalar, fermion, and
gauge theories with the TRG method presenting the results for the phase transitions in the (3+1)-
dimensional ((3+1)𝑑) complex 𝜙4 theory at finite density, (1+1)𝑑 pure U(1) lattice gauge theory
with a 𝜃 term, (3+1)𝑑 Nambu–Jona-Lasinio model at finite density and (1+1)𝑑 and (2+1)𝑑 Hubbard
models at an arbitrary chemical potential. It is demonstrated that the TRG method is free from the
sign problem in practical calculations and applicable to the four-dimensional models.

The 38th International Symposium on Lattice Field Theory, LATTICE2021 26th-30th July, 2021
Zoom/Gather@Massachusetts Institute of Technology

∗Speaker
†This is a combined contribution of “Tensor renormalization group approach to (1+1)-dimensional Hubbard model” by

S. Akiyama, “Restoration of chiral symmetry in cold and dense Nambu−Jona-Lasinio model with tensor renormalization
group” by Y. Kuramashi and “Tensor renormalization group study of two-dimensional U(1) lattice gauge theory with a
𝜃 term” by Y. Yoshimura.

‡UTHEP-763, UTCCS-P-142

© Copyright owned by the author(s) under the terms of the Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0). https://pos.sissa.it/

mailto:akiyama@het.ph.tsukuba.ac.jp
mailto:kuramasi@het.ph.tsukuba.ac.jp
mailto:yoshimur@ccs.tsukuba.ac.jp
https://pos.sissa.it/


P
o
S
(
L
A
T
T
I
C
E
2
0
2
1
)
5
3
0

QFTs with TRG Shinichiro Akiyama, Yoshinobu Kuramashi and Yusuke Yoshimura

1. Introduction

In 2007 the tensor renormalization group (TRG) method was originally proposed to study
two-dimensional (2𝑑) classical spin systems in the field of condensed matter physics [1].1 This
work attracted the attention of elementary particle physicists since the TRG method has several
advantages over the Monte Carlo method. (i) The TRG method is a deterministic numerical method
so that it intrinsically does not have the sign problem encountered in stochastic methods including
the standard Monte Carlo simulations. (ii) The logarithmic dependence of the computational cost
on the system size enables us to access the thermodynamic limit and the zero-temperature limit.
(iii) The TRG method allows direct manipulation of the Grassmann variables, which results in
comparable computational costs between the fermionic and bosonic systems. It should be noted
that we do not need to introduce the auxiliary fields to treat the four-fermi interactions, which are
required in the Monte Carlo-based algorithms. (iv) We can obtain the partition function or the path
integral itself. A typical benefit is the calculation of the pressure required in the equation of state,
which is just given by the grand potential for the vast homogeneous system.

Unfortunately, there exist difficulties in the application of the TRG method to the quantum
field theories (QFTs). For the scalar theories, we need to regularize the continuous degrees of
freedom in the path-integral formalism. The gauge theories may have an additional difficulty
to treat the redundant degrees of freedom due to the local gauge symmetry. The fermion fields
are expressed with the Grassmann variables in the path-integral formalism so that we need to
incorporate the Grassmann algebra in the TRG method. Furthermore, we need an efficient algorithm
to calculate higher-dimensional theories, since the original TRG algorithm [1] is applicable to only
two-dimensional (2𝑑) models. In this report, we explain how we have overcome these difficulties
and present some physics results that the current Monte Carlo methods would never achieve due to
the sign problem or the computational cost.

This report consists of two parts. We first discuss the application of the TRG method to the
bosonic systems. We give a brief review of the analysis of the (3+1)𝑑 complex 𝜙4 theory at finite
density with the TRG method in Sec. 2.1. It is instructive to demonstrate how to treat the continuous
degree of freedom in the scalar theories and show evidence that the TRG method is free from the
sign problem. In Sec. 2.2, we present the results for the 2𝑑 U(1) gauge theory with a 𝜃 term, which
is another notorious example with the complex action problem. The second part is devoted to
discussing the fermionic systems. In Sec. 3.1, we briefly explain how to apply the TRG method to
evaluate fermionic path integrals. Section 3.2 presents the TRG study of the Nambu−Jona-Lasinio
(NJL) model in the cold and dense region as a representative case of the fermionic systems. Based
on a similarity between the NJL model and the Hubbard model, we also show the applicability of
the TRG method to the (1+1)𝑑 and (2+1)𝑑 Hubbard models in Secs. 3.3 and 3.4. Summary and
outlook are given in Sec. 4.

1In this paper the TRG method or the TRG approach refers to not only the original numerical algorithm proposed by
Levin and Nave [1] but also its extensions [2–9].
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2. Bosonic systems

2.1 (3+1)𝑑 complex 𝜙4 theory at finite density

The QFT application of the TRG method was first tried to the (1+1)𝑑 real scalar 𝜙4 theory in
2012, where the spontaneous Z2 symmetry breaking was investigated by employing an expansion
method with the orthogonal functions to regularize the continuous degrees of freedom for the scalar
field [10]. Several years later this model was revisited employing the Gauss quadrature to make
a different regularization of the continuous scalar fields and succeeded in determining the critical
coupling in the continuum limit [11]. This work was followed by the study of the (1+1)𝑑 complex
𝜙4 theory at finite density, which is a typical system with the complex action problem. The Silver
Blaze phenomenon, where bulk observables are independent of the chemical potential 𝜇 up to
some critical point 𝜇c in the thermodynamic limit at zero temperature, was successfully confirmed
on the extremely large volume of 10242 demonstrating that the TRG method does not suffer from
the complex action problem [12]. In this subsection, we present the recent results for the (3+1)𝑑
complex 𝜙4 theory at finite density [13] explaining how to regularize the continuous scalar fields
with the Gauss quadrature.

The (3+1)𝑑 complex 𝜙4 theory at finite density, which is defined by a complex action, is
expected to show the Silver Blaze phenomenon. Since the complex phase of the action plays an
essential role in this phenomenon, this model has been studied by various methods intended to
overcome or tame the sign problem, such as the complex Langevin approach [14], the thimble
method [15–17], and the world-line representation [18, 19]. We explain how to define a finite-
dimensional tensor with regularization of scalar fields and show that the efficiency of the TRG
method to investigate the Silver Blaze phenomena without suffering from the sign problem.

2.1.1 Tensor network representation with the Gauss quadrature

The lattice action of the (3+1)𝑑 complex 𝜙4 theory at finite density is defined by

𝑆[𝜙] =
∑
𝑛∈Λ

[
(8 + 𝑚2) |𝜙𝑛 |2 + 𝜆 |𝜙𝑛 |4 −

4∑
𝜈=1

(
e𝜇𝛿𝜈4𝜙∗𝑛𝜙𝑛+�̂� + e−𝜇𝛿𝜈4𝜙𝑛𝜙

∗
𝑛+�̂�

)]
(1)

with the complex scalar field 𝜙𝑛, the bare mass 𝑚, the coupling constant 𝜆 > 0 and the chemical
potential 𝜇. 𝜙𝑛 lives on a site 𝑛 = (𝑛1, 𝑛2, 𝑛3, 𝑛4) ∈ Λ(⊂ Z4). The lattice spacing has been set to 1.
We choose the periodic boundary condition for the scalar field: 𝜙𝑛+𝑁𝜈 �̂� = 𝜙𝑛 for 𝜈 = 1, 2, 3, 4 with
�̂� is the unit vector of the 𝜈-direction.

Let us derive the tensor network representation of the path integral,

𝑍 =
∫

D𝜙 e−𝑆 [𝜙] . (2)

We employ the polar coordinate 𝜙𝑛 (𝑟𝑛, 𝜃𝑛) = 𝑟𝑛ei𝜋𝜃𝑛 and the associated integral measure is given
by ∫

D𝜙 =
∏
𝑛∈Λ

∫ ∞

0
d𝑟𝑛𝑟𝑛

∫ 1

−1
𝜋d𝜃𝑛. (3)
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In general, an integral of a function 𝑓 (𝜑) can be evaluated via the Gauss quadrature rule,∫
d𝜑 𝑓 (𝜑) ≈

𝐾∑
𝛼=1

𝑤𝛼 𝑓
(
𝜑 (𝛼)

)
, (4)

where 𝜑 (𝛼) and𝑤𝛼 are the 𝛼-th node of the𝐾-th polynomial and the associated weight, respectively.
Now, the continuous variables 𝑟𝑛 and 𝜃𝑛 are regularized by the 𝐾1-point Gauss-Laguerre and 𝐾2-
point Gauss-Legendre quadrature rule, respectively. 𝑟𝛼 and 𝑤1,𝛼 denote the 𝛼-th node and weight
in the former quadrature and 𝜃𝛽 and 𝑤2,𝛽 are for the 𝛽-th node and its weight in the latter one. The
regularized path integral is given by

𝑍 (𝐾1, 𝐾2) =
∑
{𝛼,𝛽 }

[∏
𝑛∈Λ

(𝑤1,𝛼𝑛e𝑟𝛼𝑛 𝑟𝛼𝑛) (𝜋𝑤2,𝛽𝑛)
]

e−𝑆 [𝜙 (𝑟𝛼 , 𝜃𝛽) ] (5)

with ∑
{𝛼,𝛽 }

=
∏
𝑛∈Λ

𝐾1∑
𝛼𝑛=1

𝐾2∑
𝛽𝑛=1

. (6)

Introducing the (𝐾1𝐾2) × (𝐾1𝐾2) square matrices,

𝑀 [𝜈 ]
𝛼𝛽,𝛼′𝛽′ =

4√𝜋 8
√
𝑟𝛼𝑤1,𝛼𝑤2,𝛽𝑟𝛼′𝑤1,𝛼′𝑤2,𝛽′ exp

(𝑟𝛼 + 𝑟𝛼′
8

)
· exp

[(
1 + 𝑚

2

8

) (
𝑟2
𝛼 + 𝑟2

𝛼′

)
+ 𝜆

8

(
𝑟4
𝛼 + 𝑟4

𝛼′

)
− 2𝑟𝛼𝑟𝛽 cos(𝜋(𝜃𝛽 − 𝜃𝛽′) − i𝜇𝛿𝜈4)

]
, (7)

the approximated path integral 𝑍 (𝐾1, 𝐾2) is expressed as

𝑍 (𝐾1, 𝐾2) =
∑
{𝛼,𝛽 }

∏
𝑛∈Λ

4∏
𝜈=1

𝑀 [𝜈 ]
𝛼𝑛𝛽𝑛 ,𝛼𝑛+�̂�𝛽𝑛+�̂�

. (8)

We then apply the singular value decomposition (SVD) to each matrix 𝑀:

𝑀 [𝜈 ]
𝛼𝛽,𝛼′𝛽′ =

𝐾1𝐾2∑
𝑘=1

𝑈 [𝜈 ]
𝛼𝛽,𝑘𝜎

[𝜈 ]
𝑘 𝑉 [𝜈 ]∗

𝛼′𝛽′,𝑘 ≈
𝐷∑
𝑘=1

𝑈 [𝜈 ]
𝛼𝛽,𝑘𝜎

[𝜈 ]
𝑘 𝑉 [𝜈 ]∗

𝛼′𝛽′,𝑘 , (9)

where 𝜎 [𝜈 ]
𝑘 is the 𝑘-th singular value sorted in the descending order, and 𝑈 [𝜈 ] and 𝑉 [𝜈 ] are the

unitary matrices composed of the singular vectors. The truncation parameter 𝐷 (< 𝐾1𝐾2) is chosen
as the bond dimension in the TRG algorithm. Finally, the path integral is approximately represented
by the tensor network as

𝑍 (𝐾1, 𝐾2) =
∑
𝑥,𝑦,𝑧,𝑡

∏
𝑛∈Λ

𝑇𝑥𝑛𝑦𝑛𝑧𝑛𝑡𝑛𝑥𝑛−1̂𝑦𝑛−2̂𝑧𝑛−3̂𝑡𝑛−4̂
, (10)

where the tensor 𝑇 is defined by

𝑇𝑖1𝑖2𝑖3𝑖4 𝑗1 𝑗2 𝑗3 𝑗4 =
𝐾1∑
𝛼=1

𝐾2∑
𝛽=1

4∏
𝜈=1

√
𝜎 [𝜈 ]
𝑖𝜈
𝜎 [𝜈 ]
𝑗𝜈
𝑈 [𝜈 ]
𝛼𝛽,𝑖𝜈

𝑉 [𝜈 ]∗
𝛼𝛽, 𝑗𝜈

. (11)
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2.1.2 Numerical setup

We choose 𝑚 = 0.1 and 𝜆 = 1.0 for the lattice complex 𝜙4 theory of Eq. (1). The path integral
of Eq. (10) is evaluated using the anisotropic TRG (ATRG) algorithm [5] on a periodic lattice with
the volume 𝑉 = 𝐿4 (𝐿 = 2𝑚, 𝑚 ∈ N). The bond dimension is set to 𝐷 = 45 and the polynomial
orders in the Gauss quadrature methods to 𝐾 = 𝐾1 = 𝐾2 = 64. Convergence with respect to these
algorithmic parameters is checked in Ref. [13].

2.1.3 Silver Blaze phenomenon

We first define the phase-quenched path integral as

𝑍pq =
∫

D𝜙 e−Re(𝑆) , (12)

where only the real part of the Boltzmann factor is taken by the decomposition e−𝑆 = e−Re(𝑆)ei𝜃 .
The expectation value of an observable O with the phase-quenched theory is expressed as ⟨O⟩pq,
which is related to ⟨O⟩ with the full theory as

⟨O⟩ =
⟨Oei𝜃 ⟩pq

⟨ei𝜃 ⟩pq
. (13)

In case that the phase factor oscillates frequently in the large 𝜇 region, it is difficult for the Monte
Carlo method to evaluate the ratio because of the vanishing contributions from both the numerator
and the denominator (This is the so-called sign problem). In Fig. 1 we plot the average phase factor
⟨ei𝜃 ⟩pq = 𝑍/𝑍pq as a function of 𝜇 varying the lattice volume𝑉 . This quantity measures how severe
the sign problem is for given parameters of 𝜇 and 𝑉 . We observe that ⟨ei𝜃 ⟩pq becomes close to zero
as either of the volume or the chemical potential increases. On the largest volume of 𝑉 = 10244,
which is essentially regarded as the thermodynamic limit at zero temperature, the average phase
factor quickly falls off from one at 𝜇 = 0 to zero for 𝜇 ≥ 0.05, where the Monte Carlo method does
not work. In Fig. 2 we plot the 𝜇 dependence of the particle number density defined by

⟨𝑛⟩ = 1
𝑉

𝜕 ln 𝑍
𝜕𝜇

, (14)

which is evaluated by the ATRG algorithm with impurity tensors [11]. We observe that the Silver
Blaze phenomenon becomes manifest on the larger volume toward the thermodynamic limit at
zero temperature: the particle number density stays around zero up to 𝜇c ≈ 0.65 and shows rapid
increase beyond 𝜇c, even in the regime with the vanishing ⟨ei𝜃 ⟩pq.

2.2 (1+1)𝑑 pure U(1) lattice gauge theory with a 𝜃 term

In comparison with the scalar theories, it is more difficult to develop an efficient TRG algorithm
for gauge theories because of the redundancy of gauge degrees of freedom. So far a few numerical
attempts have been made to investigate the phase transition in the pure lattice gauge theories [20, 21].
Here we propose to use the Gauss quadrature to regularize the continuous gauge theories [20]. This
is motivated by the future application of the TRG method to the (3 + 1)𝑑 SU(𝑁) gauge theories.

The (1+1)𝑑 pure U(1) lattice gauge theory with a 𝜃 term is the simplest pure lattice gauge
theory with a 𝜃 term. There are two motivations to study it with the TRG method. Firstly, this
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Figure 1: Average phase factor as a function of 𝜇
with 𝑚2 = 0.01, 𝜆 = 1.0, 𝐾 = 64, 𝐷 = 45. The
lattice volume 𝑉 is varied from 44 to 10244.
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µ
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Figure 2: Particle number density as a function of
𝜇 with the lattice volume varied from 24 to 10244.
Other parameters of 𝑚, 𝜆, 𝐾 and 𝐷 are the same as
those in Fig. 1.

model is a case of the complex action due to the 𝜃 term. The analytical result for the partition
function is already known [22]: This model undergoes the first-order phase transition at 𝜃 = 𝜋. It
is worth noting that a recent numerical study with the complex Langevin approach finds that the
naive implementation fails for this theory [23]. Therefore, it should be a good testbed to check that
the TRG method does not suffer from the complex action problem or the sign problem. Secondly,
we try to apply the Gauss quadrature method with some improvement to discretize the phase in
the U(1) link variable. This follows the success of the Gauss quadrature method to discretize the
continuous degree of freedom in the scalar theories [11, 12].

2.2.1 Tensor network representation with the Gauss quadrature

The Euclidean action of the (1+1)𝑑 pure U(1) lattice gauge theory with a 𝜃 term is defined by

𝑆 = −𝛽
∑
𝑥∈Λ

cos 𝑝𝑥 − i𝜃𝑄, (15)

𝑝𝑥 = 𝜑𝑥,1 + 𝜑𝑥+1̂,2 − 𝜑𝑥+2̂,1 − 𝜑𝑥,2, (16)

𝑄 =
1

2𝜋

∑
𝑥∈Λ

𝑞𝑥 , 𝑞𝑥 = 𝑝𝑥 mod 2𝜋, (17)

where 𝜑𝑥,𝜈 ∈ [−𝜋, 𝜋] is the phase of U(1) link variable at site 𝑥 in 𝜈 direction. The range of 𝑞𝑥 is
[−𝜋, 𝜋] and it can be expressed as follows by introducing an integer 𝑛𝑥:

𝑞𝑥 = 𝑝𝑥 + 2𝜋𝑛𝑥 , 𝑛𝑥 ∈ {−2,−1, 0, 1, 2}. (18)

For the periodic boundary condition, the topological charge 𝑄 becomes an integer:

𝑄 =
∑
𝑥∈Λ

( 𝑝𝑥
2𝜋

+ 𝑛𝑥
)
=

∑
𝑥∈Λ

𝑛𝑥 . (19)

The tensor may be given with continuous indices,

T (𝜑𝑥,1, 𝜑𝑥+1̂,2, 𝜑𝑥+2̂,1, 𝜑𝑥,2) = exp
(
𝛽 cos 𝑝𝑥 + i

𝜃

2𝜋
𝑞𝑥

)
. (20)
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The partition function is represented as

𝑍 =

(∏
𝑥∈Λ

∏
𝜈=1,2

∫ 𝜋

−𝜋

d𝜑𝑥,𝜇
2𝜋

) ∏
𝑥∈Λ

T (𝜑𝑥,1, 𝜑𝑥+1̂,2, 𝜑𝑥+2̂,1, 𝜑𝑥,2). (21)

We regularize all the integrals in Eq. (21) using the Gauss-Legendre quadrature with the polynomial
order 𝐾 . The finite-dimensional tensor network is expressed as

𝑍 (𝐾) ≈
∑
{𝛼}

∏
𝑥∈Λ

𝑇𝛼𝑥,1𝛼𝑥+1̂,2𝛼𝑥+2̂𝛼𝑥,2 (22)

with the discretized local tensor

𝑇𝑖 𝑗𝑘𝑙 =

√
𝑤𝑖𝑤 𝑗𝑤𝑘𝑤𝑙

(2𝜋)2 T
(
𝜑 (𝑖) , 𝜑 ( 𝑗) , 𝜑 (𝑘) , 𝜑 (𝑙)

)
. (23)

2.2.2 Improvement technique to reduce the truncation error

We have developed further improvements for the above method. In the SVD procedure to
prepare the initial tensor before starting the iterative TRG steps [11, 12, 24], we employ the
following eigenvalue decomposition:

𝑀𝑖 𝑗𝑘𝑙 =

√
𝑤𝑖𝑤 𝑗𝑤𝑘𝑤𝑙

(2𝜋)4

∫ 𝜋

−𝜋
d𝜑1d𝜑2T

(
𝜑 (𝑖) , 𝜑 ( 𝑗) , 𝜑1, 𝜑2

)
T ∗

(
𝜑 (𝑘) , 𝜑 (𝑙) , 𝜑1, 𝜑2

)
, (24)

which is essentially equivalent to

𝑀𝑖 𝑗𝑘𝑙 = lim
𝐾 ′→∞

𝐾 ′∑
𝑚,𝑛=1

𝑇𝑖 𝑗𝑚𝑛𝑇
∗
𝑘𝑙𝑚𝑛. (25)

This procedure is expected to reduce the discretization errors in 𝑀𝑖 𝑗𝑘𝑙 . To evaluate Eq. (24), we
use the character expansion [25, 26]:

T (𝜑1, 𝜑2, 𝜑3, 𝜑4) =
∞∑

𝑚,𝑛=−∞
ei𝑛(𝜑1+𝜑2−𝜑3−𝜑4) 𝐼𝑚(𝛽)𝐽𝑛−𝑚(𝜃) (26)

where 𝐼𝑚(𝛽) is the 𝑚-th order modified Bessel function of the first kind and

𝐽𝑛 (𝜃) = (−1)𝑛 2
𝜃 + 2𝜋𝑛

sin
(
𝜃

2

)
. (27)

Then, Eq. (24) is rewritten as

𝑀𝑖 𝑗𝑘𝑙 =

√
𝑤𝑖𝑤 𝑗𝑤𝑘𝑤𝑙

(2𝜋)4

∞∑
𝑛=−∞

ei𝑛(𝜑 (𝑖)+𝜑 ( 𝑗)−𝜑 (𝑘)−𝜑 (𝑙) )
( ∞∑
𝑚,𝑚′=−∞

𝐼𝑚(𝛽)𝐼𝑚′ (𝛽)𝐽𝑛−𝑚(𝜃)𝐽𝑛−𝑚′ (𝜃)
)
.

(28)

In the practical calculation, the sums of 𝑛, 𝑚 and 𝑚′ can be truncated when the contributions of
the terms are small enough. In this work we discard the contributions of 𝐼𝑚,𝑚′/𝐼0 < 10−12 or
𝐽𝑛−𝑚,𝑛−𝑚′/𝐽0 < 10−12.

7
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2.2.3 Numerical setup

The partition function of Eq. (21) is evaluated with the TRG algorithm at 𝛽 =0.0 and 10.0 as
a function of 𝜃 on a 𝑉 = 𝐿 × 𝐿 lattice, where 𝐿 is enlarged up to 1024. We choose 𝐾 = 32 for the
polynomial order of the Gauss-Legendre quadrature. The SVD procedure in the TRG algorithm
is truncated with 𝐷 = 32. We have checked that these choices of 𝐷 and 𝐾 provide us sufficiently
converged results for all the parameter sets employed in this work. Since the scaling factor of the TRG
method is

√
2, allowed lattice sizes for the partition function are 𝐿 =

√
2, 2, 2

√
2, · · · , 512

√
2, 1024.

The periodic boundary condition is employed in both directions so that the topological charge 𝑄 is
quantized to be an integer.

2.2.4 Free energy and topological charge density

The analytic result for the partition function of Eq. (21) is given by [22]:

𝑍analytic =
∞∑

𝑄=−∞
(𝑧P(𝜃 + 2𝜋𝑄, 𝛽))𝑉 , (29)

𝑧P(𝜃, 𝛽) =
∫ 𝜋

−𝜋

d𝜑P

2𝜋
exp

(
𝛽 cos 𝜑P + i

𝜃

2𝜋
𝜑P

)
, (30)

where 𝑧P(𝜃, 𝛽) denotes the one-plaquette partition function with 𝜑P ∈ [−𝜋, 𝜋]. In Fig. 3 we compare
our numerical results for the free energy ln 𝑍/𝑉 with the above exact results as a function of 𝜃. We
observe a good consistency over the range of 0 ≤ 𝜃 ≤ 2𝜋. The kink of the free-energy at 𝜃 = 𝜋

indicates the first-order phase transition.
The expectation value of the topological charge ⟨𝑄⟩ at 𝛽 = 10.0 is obtained by the numerical

derivative of the free energy with respect to 𝜃:

⟨𝑄⟩ = −i
𝜕 ln 𝑍
𝜕𝜃

. (31)

Figure 4 shows the volume dependence of ⟨𝑄⟩/𝑉 around 𝜃 = 𝜋 with much finer resolution of 𝜃
than Fig. 3, where the first-order phase transition is expected. We observe that a finite discontinuity
emerges with mutual crossings of curves between different volumes at 𝜃 = 𝜋 as the lattice size
𝑉 = 𝐿2 is increased. This feature indicates this system undergoes a first-order phase transition at
𝜃 = 𝜋.

2.2.5 Topological susceptibility

We investigate the properties of the phase transition by applying the finite size scaling analysis
to the topological susceptibility:

𝜒(𝐿) = − 1
𝑉

𝜕2 ln 𝑍
𝜕𝜃2 . (32)

Figure 5 shows the topological susceptibility as a function of 𝜃 for various lattice sizes. The peak
structure is observed and its height 𝜒max(𝐿) grows as 𝐿 increases. In order to determine the peak
position 𝜃c(𝐿) and the peak height 𝜒max(𝐿) at each 𝐿, we employ the quadratic approximation of
the topological susceptibility around the peak position:

𝜒(𝐿) ∼ 𝜒max(𝐿) + 𝑅 (𝜃 − 𝜃c(𝐿))2 (33)

8
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analytic result

Figure 3: 𝜃 dependence of free energy at 𝛽 = 10.0
with 𝐾 = 32 and 𝐷 = 32 on a 1024 × 1024 lattice.
Solid curve denotes the analytic result of Eq. (29)
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Figure 2. Topological charge density with 8 ≤ L ≤ 256 as a function of θ at β = 10.0.
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Figure 3. Topological charge density with 4 ≤ L ≤ 64 as a function of θ at β = 0.0. Solid curve
denotes the analytic result of eq. (3.5) obtained in the infinite volume limit.

3.4 Topological susceptibility

We investigate the properties of the phase transition by applying the finite size scaling

analysis to the topological susceptibility:

χ(L) = − 1

V

∂2 lnZ

∂θ2
. (3.6)

Figure 4 shows the topological susceptibility as a function of θ for various lattice sizes.

The peak structure is observed and its height χmax(L) grows as L increases. In order to

determine the peak position θc(L) and the peak height χmax(L) at each L, we employ the

quadratic approximation of the topological susceptibility around the peak position:

χ(L) ∼ χmax(L) +R (θ − θc(L))
2 (3.7)

with R a constant.

We expect that the peak height scales with L as

χmax(L) ∝ Lγ/ν , (3.8)

– 6 –

Figure 4: Topological charge density with 8 ≤ 𝐿 ≤
256 as a function of 𝜃 at 𝛽 = 10.0.

with 𝑅 a constant. We expect that the peak height scales with 𝐿 as

𝜒max(𝐿) ∝ 𝐿𝛾/𝜈 , (34)

where 𝛾 and 𝜈 are the critical exponents. The 𝐿 dependence of the peak height 𝜒max(𝐿) is plotted in
Fig. 6. The solid curve represents the fit result obtained with the fit function of 𝜒max(𝐿) = 𝐴+𝐵𝐿𝛾/𝜈
choosing the fit range of 128 ≤ 𝐿 ≤ 1024. The results for the fit parameters are given by
𝐴 = −3(2) × 10−3, 𝐵 = 7.12(8) × 10−5 and 𝛾/𝜈 = 1.998(2). The value of the exponent 𝛾/𝜈 is
consistent with two, which is the expected critical exponent in the first-order phase transition in the
two-dimensional system.
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Figure 4. Topological susceptibility χ(L) as a function of θ with 16 ≤ L ≤ 512.
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Figure 5. Peak height of topological susceptibility χmax(L) as a function of L. Solid curve denotes
the fit result.

where γ and ν are the critical exponents. The L dependence of the peak height χmax(L) is

plotted in figure 5. The solid curve represents the fit result obtained with the fit function

of χmax(L) = A+ BLγ/ν choosing the fit range of 128 ≤ L ≤ 1024. The results for the fit

parameters are given by A = −3(2) × 10−3, B = 7.12(8) × 10−5 and γ/ν = 1.998(2). The

value of the exponent γ/ν = 1.998(2) is consistent with two, which is the expected critical

exponent in the first-order phase transition in the two-dimensional system.
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Figure 5: Topological susceptibility 𝜒(𝐿) as a func-
tion of 𝜃 with 16 ≤ 𝐿 ≤ 512.
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where γ and ν are the critical exponents. The L dependence of the peak height χmax(L) is

plotted in figure 5. The solid curve represents the fit result obtained with the fit function

of χmax(L) = A+ BLγ/ν choosing the fit range of 128 ≤ L ≤ 1024. The results for the fit

parameters are given by A = −3(2) × 10−3, B = 7.12(8) × 10−5 and γ/ν = 1.998(2). The

value of the exponent γ/ν = 1.998(2) is consistent with two, which is the expected critical

exponent in the first-order phase transition in the two-dimensional system.
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Figure 6: Peak height of topological susceptibility
𝜒max (𝐿) as a function of 𝐿. Solid curve denotes the
fit result.
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3. Fermionic systems

In 2014, the TRG method was applied to analyze the phase structures of the lattice Schwinger
model with and without the 𝜃 term, which contains the sign problem, developing the Grassmann
TRG (GTRG) algorithm [3, 27]. This was the first numerical calculation of the fermionic system
with the TRG method and also the first one for the gauge theory. The GTRG algorithm was also
applied to the analysis of the finite-density (1+1)𝑑 lattice Gross-Neveu model [28]. After that, the
Grassmann HOTRG (GHOTRG) algorithm was developed based on the GTRG algorithm in order
to investigate the higher-dimensional fermionic systems in particle physics [4]. The validity of the
GHOTRG algorithm was tested using the Green functions with the (2+1)𝑑 relativistic free Wilson
fermion, whose exact values are analytically calculable [29].

Recently, we have investigated the phase structure of the NJL model [30, 31] at extremely
low temperature and high-density region on the lattice developing the Grassmann ATRG (GATRG)
algorithm [7]. The study of the NJL model has two important aspects. Firstly, the NJL model is a
prototype of QCD. Their phase structures are expected to be similar as shown in Figs. 7 and 8. The
study of the NJL model at finite density is a good testbed before exploring the finite density QCD.
Secondly, the NJL model has a similar path-integral form to the Hubbard model, a fundamentally
important model to understand the strongly correlated electrons. Both models consist of hopping
terms and a four-fermi interaction term. This fact indicates that the technical details of the TRG
method employed in the analysis of the NJL model could be applied to the Hubbard model. Actually,
we have analyzed the doping-driven metal-insulator transition of the (1+1)𝑑 Hubbard model with the
TRG method in Ref. [32] and our results for the critical chemical potential and the critical exponent
show good consistency with the theoretical predictions based on the Bethe ansatz [33, 34]. We have
also extended this calculation to the (2+1)𝑑 Hubbard model [35].

𝑇

𝜇

1st

2nd Critical end point

ത𝜓𝜓 ≠ 0 ത𝜓𝜓 = 0

Figure 7: Schematic view of expected phase dia-
gram of the NJL model on the 𝑇-𝜇 plane. Solid
and broken curves represent the first- and second-
order phase transitions, respectively. Closed circle
denotes the critical end point (CEP) where the first-
order phase transition line terminates.

Quark-Gluon Plasma

Color 
Superconductor

Density HL

Te
m

p

H

L
Hadron

CEP

Figure 8: Schematic view of expected phase dia-
gram of QCD on the 𝑇-𝜇 plane. As in Fig. 7 the
first-order phase transition line rises from the dense
region at zero temperature and terminates at the crit-
ical end point (CEP).
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3.1 TRG method for fermionic systems

There are several ways to introduce the tensor network representation for fermionic path
integrals [3, 28, 36, 37]. Here, we follow the formulation of Ref. [37], where the fermionic path
integrals are expressed by the Grassmann tensors. Let us now consider the following fermionic
action as an example,

𝑆[�̄�, 𝜓] =
∑
𝑛∈Λ

[
−𝑡

𝑑∑
𝜈=1

(
�̄�(𝑛)𝜓(𝑛 + �̂�) + �̄�(𝑛 + �̂�)𝜓(𝑛)

)
+𝑊 [�̄�(𝑛), 𝜓(𝑛)]

]
. (35)

𝜓(𝑛) and �̄�(𝑛) are the fermion fields. For simplicity, we assume that they are single-component
Grassmann fields. The path integral is

𝑍 =
∫ (∏

𝑛∈Λ
d�̄�(𝑛)d𝜓(𝑛)

)
e−𝑆 [�̄�,𝜓] . (36)

We decompose hopping factors introducing auxiliary Grassmann fields such that

e𝑡 �̄� (𝑛)𝜓 (𝑛+�̂�) =
∫

d𝜂𝜈 (𝑛)d𝜂𝜈 (𝑛) e−�̄�𝜈 (𝑛)𝜂𝜈 (𝑛) e
√
𝑡 �̄� (𝑛)𝜂𝜈 (𝑛) e−

√
𝑡 𝜓 (𝑛+�̂�) �̄�𝜈 (𝑛) , (37)

e𝑡 �̄� (𝑛+�̂�)𝜓 (𝑛) =
∫

d𝜉𝜈 (𝑛)d𝜉𝜈 (𝑛) e−𝜉𝜈 (𝑛) 𝜉𝜈 (𝑛) e−
√
𝑡 �̄� (𝑛+�̂�) 𝜉𝜈 (𝑛) e−

√
𝑡 𝜓 (𝑛) 𝜉𝜈 (𝑛) . (38)

Thanks to these decompositions, we are now allowed to integrate out 𝜓(𝑛) and �̄�(𝑛) independently
at each site. The Grassmann tensor T is defined as a result of the integration,

T =
∫

d�̄�d𝜓 e−𝑊 [�̄�,𝜓]
𝑑∏
𝜈=1

e
√
𝑡 �̄�𝜂𝜈 (𝑛) e−

√
𝑡 𝜓𝜉𝜈 (𝑛) e−

√
𝑡 �̄� 𝜉𝜈 (𝑛−�̂�) e−

√
𝑡 𝜓�̄�𝜈 (𝑛−�̂�) . (39)

Since (𝜂𝜈 , 𝜉𝜈) and (𝜂𝜈 , 𝜉𝜈) play the roles of bond degrees of freedom, we regard them as subscripts
of the Grassmann tensor; TΨ1 · · ·Ψ𝑑Ψ̄𝑑 · · ·Ψ̄1

with Ψ𝜈 = (𝜂𝜈 , 𝜉𝜈) and Ψ̄𝜈 = (𝜂𝜈 , 𝜉𝜈). The path integral
of Eq. (36) is now expressed by

𝑍 =
∫ (∏

𝑛∈Λ

𝑑∏
𝜈=1

dΨ̄𝜈 (𝑛)dΨ𝜈 (𝑛) e−Ψ̄𝜈 (𝑛)Ψ𝜈 (𝑛)
) ∏
𝑛∈Λ

TΨ1 (𝑛) ·· ·Ψ𝑑 (𝑛)Ψ̄𝑑 (𝑛−𝑑) ·· ·Ψ̄1 (𝑛−1̂) . (40)

We refer this expression as the Grassmann tensor network representation for 𝑍 .
To apply a certain TRG algorithm to evaluate Eq. (40), one needs to develop the corresponding

algorithm extended to evaluate the Grassmann integral. To this aim, we rewrite Eq. (39) in the
following form,

T =
©«
𝑑∏
𝜈=1

∑
𝑖𝜈 , 𝑗𝜈 ,𝑖

′
𝜈 , 𝑗

′
𝜈

ª®¬𝑇(𝑖1 𝑗1) ·· · (𝑖𝑑 𝑗𝑑) (𝑖′1 𝑗′1) ·· · (𝑖′𝑑 𝑗′𝑑)𝜂𝑖11 𝜉 𝑗11 · · · 𝜂𝑖𝑑𝑑 𝜉
𝑗𝑑
𝑑 𝜉

𝑗′𝑑
𝑑 𝜂

𝑖′𝑑
𝑑 · · · 𝜉 𝑗

′
1

1 𝜂
𝑖′1
1 . (41)

𝑇 in the right hand side is a tensor in the usual sense.2 In the practical TRG calculation, we have to
encode the information of the Grassmann algebra into𝑇 in some way. One of such ways is to encode

2One can easily obtain an explicit form of 𝑇 , but it is not necessary in the following discussion.
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the Grassmann parity for each Ψ𝜈 , Ψ̄𝜈 into the ordering of corresponding 𝜈-directional subscript in
𝑇 . For example, let us map the 𝜈-directional subscript (𝑖𝜈 𝑗𝜈) to the new one 𝐼𝜈 ∈ N by

(00) ↦→ 1, (11) ↦→ 2, (10) ↦→ 3, (01) ↦→ 4. (42)

Based on this mapping, we can regard 𝑇 in Eq. (41) as a 2𝑑-rank tensor 𝑇𝐼1 · · ·𝐼𝑑 𝐼 ′1 · · ·𝐼 ′𝑑 . For each
subscript 𝐼𝜈 (𝐼 ′𝜈), the first two components correspond to the Grassmann-even sector of Ψ𝜈 (Ψ̄𝜈).
When one implements the Grassmann TRG algorithm, it is necessary to read out the Grassmann
parity from the subscript of 𝑇 . This means that we need to define a binary function 𝑓𝜈 on 𝐼𝜈:
𝑓𝜈 (𝐼𝜈) = 0(1) if 𝐼𝜈 corresponds to the Grassmann-even(odd) sector. Thanks to these binary
functions, we can reproduce the Grassmann algebra just in 𝑇 . For instance

𝑇𝐼1𝐼2𝐼3 · · ·𝐼𝑑 𝐼 ′1 · · ·𝐼
′
𝑑
= (−1) 𝑓1 (𝐼1) 𝑓2 (𝐼2)𝑇𝐼2𝐼1𝐼3 · · ·𝐼𝑑 𝐼 ′1 · · ·𝐼 ′𝑑 (43)

corresponds to the exchange betweenΨ1 andΨ2. The same argument also holds for the renormalized
Grassmann tensor T ′ defined by a certain TRG algorithm, where the SVD,

𝑄𝑎𝑏𝑐𝑑 ≈
𝐷∑
𝑘=1

𝑈𝑎𝑏,𝑘𝜎𝑘𝑉
∗
𝑐𝑑,𝑘 , (44)

is employed to introduce the coarse-grained degrees of freedom. Within the formulation explained
above, each subscript has the information of the Grassmann parity, which allows us to consider the
block-diagonal representation of Eq. (44),[

𝑄 (even) 0
0 𝑄 (odd)

]
≈

[
𝑈 (even) 0

0 𝑈 (odd)

] [
𝜎 (even) 0

0 𝜎 (odd)

] [
𝑉 (even)† 0

0 𝑉 (odd)†

]
. (45)

In Eq. (44), the subscript 𝑘 corresponds to a new auxiliary Grassmann field in 𝜈-direction. In
addition, if 𝜎𝑘 belongs to 𝜎 (even) (𝜎 (odd) ), then 𝑘 represents the Grassmann-even(odd) component.
In other words, the block-diagonalized SVD defines a new binary function 𝑓𝜈 for the coarse-grained
auxiliary Grassmann field in 𝜈-direction.

Now, it must be ready to extend a certain TRG algorithm to evaluate Eq. (40). All we have
to do is to carry out the TRG algorithm combining some phase factor (−1) 𝑝 characterized by
binary functions which reproduce the Grassmann algebra. In the following, we use the HOTRG
[2] or ATRG [5] to evaluate fermionic path integrals. These algorithms consider a mapping like
T · T ↦→ T ′ along a certain direction. Suppose we make such a mapping along 1̂-direction, which
firstly carries out the Grassmann integration,

(TT )Ψ1 (𝑛+1̂)Ξ2 · · ·Ξ𝑑Ξ̄𝑑 · · ·Ξ̄2Ψ̄1 (𝑛−1̂)

=
∫

dΨ̄1(𝑛)dΨ1(𝑛) e−Ψ̄1 (𝑛)Ψ1 (𝑛)TΨ1 (𝑛+1̂) ·· ·Ψ𝑑 (𝑛+1̂)Ψ̄𝑑 (𝑛+1̂−𝑑) ·· ·Ψ̄1 (𝑛)TΨ1 (𝑛) ·· ·Ψ𝑑 (𝑛)Ψ̄𝑑 (𝑛−𝑑) ·· ·Ψ̄1 (𝑛−1̂) ,

(46)

before we apply isometries (or squeezers) to accomplish the coarse-graining transformation (TT ) ↦→
T ′. We have used shorthand notations defined by Ξ𝜈 = (Ψ𝜈 (𝑛 + 1̂)Ψ𝜈 (𝑛)) and Ξ̄𝜈 = (Ψ̄𝜈 (𝑛 −

12
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�̂�)Ψ̄𝜈 (𝑛 + 1̂ − �̂�)). Therefore, introducing 𝐼𝜈 (𝑛) = 𝑓𝜈 (𝐼𝜈 (𝑛)), one can find

𝑝 = 𝐼1(𝑛)
+ 𝐼2(𝑛)𝐼2(𝑛 + 1̂)
+ 𝐼3(𝑛) [𝐼2(𝑛 + 1̂) + 𝐼3(𝑛 + 1̂)]
+ · · ·
+ 𝐼𝑑 (𝑛) [𝐼2(𝑛 + 1̂) + · · · + 𝐼𝑑 (𝑛 + 1̂)]
+ 𝐼 ′𝑑 (𝑛 − 𝑑) [𝐼 ′𝑑 (𝑛 + 1̂ − 𝑑) + · · · + 𝐼 ′2(𝑛 + 1̂ − 2̂)]
+ 𝐼 ′𝑑−1(𝑛 − �𝑑 − 1) [𝐼 ′𝑑−1(𝑛 + 1̂ − �𝑑 − 1) + · · · + 𝐼 ′2(𝑛 + 1̂ − 2̂)]
+ · · ·
+ 𝐼 ′2(𝑛 − 2̂)𝐼 ′2(𝑛 + 1̂ − 2̂) (47)

is the phase factor which makes the contraction

(𝑇𝑇)𝐼1 (𝑛+1̂)𝐽2 · · ·𝐽𝑑 𝐼 ′1 (𝑛)𝐽
′
2 · · ·𝐽

′
𝑑
=

∑
𝐼1 (𝑛)

(−1) 𝑝𝑇𝐼1 (𝑛+1̂) ·· ·𝐼𝑑 (𝑛+1̂) 𝐼1 (𝑛) ·· ·𝐼 ′𝑑 (𝑛−𝑑+1̂)𝑇𝐼1 (𝑛) ·· ·𝐼𝑑 (𝑛) 𝐼 ′1 (𝑛−1̂) ·· ·𝐼 ′
𝑑
(𝑛−𝑑)

(48)

equivalent to Eq. (46). Note that we have introduced shorthand notations 𝐽𝜈 = (𝐼𝜈 (𝑛+ 1̂)𝐼𝜈 (𝑛)) and
𝐽 ′𝜈 = (𝐼 ′𝜈 (𝑛 + 1̂ − �̂�)𝐼 ′𝜈 (𝑛 − �̂�)). It is a very straightforward task to develop the Grassmann version
of the HOTRG or ATRG (or also the triad RG [6]) reflecting on Eq. (48). 3

3.2 (3+1)𝑑 NJL model on the lattice

The Lagrangian of the NJL model in the continuum is defined as follows:

L =
4∑
𝜈=1

�̄�(𝑥)𝛾𝜈𝜕𝜈𝜓(𝑥) − 𝑔0
{
(�̄�(𝑥)𝜓(𝑥))2 + (�̄�(𝑥)i𝛾5𝜓(𝑥))2} , (49)

which has the U(1) chiral symmetry with 𝜓(𝑥) → ei𝛼𝛾5𝜓(𝑥) and �̄�(𝑥) → �̄�(𝑥)ei𝛼𝛾5 . A schematic
view of the expected phase structure on the 𝑇-𝜇 plane is depicted in Fig. 7, where a characteristic
feature is the first-order chiral phase transition in the dense region at very low temperature [38]. We
have investigated the phase transition employing the chiral condensate as an order parameter with
the Kogut-Susskind fermion to formulate the NJL model on the lattice. Following Refs. [39, 40],
we define the model at finite chemical potential 𝜇 as

𝑆 =
1
2
𝑎3

∑
𝑛∈Λ

4∑
𝜈=1

𝜂𝜈 (𝑛)
[
e𝜇𝑎𝛿𝜈,4 �̄�(𝑛)𝜒(𝑛 + �̂�) − e−𝜇𝑎𝛿𝜈,4 �̄�(𝑛 + �̂�)𝜒(𝑛)

]
+ 𝑚𝑎4

∑
𝑛∈Λ

�̄�(𝑛)𝜒(𝑛) − 𝑔0𝑎
4
∑
𝑛∈Λ

4∑
𝜈=1

�̄�(𝑛)𝜒(𝑛) �̄�(𝑛 + �̂�)𝜒(𝑛 + �̂�), (50)

3When one assumes the anti-periodic boundary condition in �̂�-direction, an additional phase factor (−1)𝐼𝜈 is necessary
just in taking the trace of 𝑇 .
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where 𝑛 = (𝑛1, 𝑛2, 𝑛3, 𝑛4) ∈ Λ(⊂ Z4) specifies a position in lattice Λ with the lattice spacing 𝑎.
𝜒(𝑛) and �̄�(𝑛) are Grassmann-valued fields without the Dirac structure. Since they describe the
Kogut-Susskind fermions, 𝜒(𝑛) and �̄�(𝑛) are single-component Grassmann variables. 𝜂𝜈 (𝑛) is the
staggered sign function defined by 𝜂𝜈 (𝑛) = (−1)𝑛1+···+𝑛𝜈−1 with 𝜂1(𝑛) = 1. The four-fermi coupling
is chosen to be 𝑔0 = 32. The path integral is defined in an ordinary manner:

𝑍 =
∫ (∏

𝑛∈Λ
d𝜒(𝑛)d�̄�(𝑛)

)
e−𝑆 . (51)

For vanishing mass 𝑚 → 0, Eq. (50) is invariant under the following continuous chiral transforma-
tion:

𝜒(𝑛) → ei𝛼𝜖 (𝑛) 𝜒(𝑛), (52)
�̄�(𝑛) → �̄�(𝑛)ei𝛼𝜖 (𝑛) (53)

with 𝛼 ∈ R and 𝜖 (𝑛) = (−1)𝑛1+𝑛2+𝑛3+𝑛4 .
After rewriting the path integral in the tensor network representation, we evaluate it using the

GATRG algorithm on a lattice up to the volume of 𝑉 = 𝐿4 (𝐿 = 2𝑚, 𝑚 ∈ N). The technical details
for the tensor network representation and the GATRG procedure are given in Ref. [7]. We employ
the periodic boundary conditions for 𝑥-, 𝑦-, 𝑧-directions and the anti-periodic boundary condition
for 𝑡-direction.

3.2.1 Heavy dense limit as a benchmark

We first check the efficiency of the GATRG algorithm by benchmarking with the NJL model
in the heavy dense limit, which is defined as 𝑚 → ∞ and 𝜇 → ∞ with e𝜇/𝑚 kept fixed. The heavy
dense limit gives us an opportunity to compare numerical results with the exact analytical ones,
whose expressions for the number density ⟨𝑛⟩ and the fermion condensate ⟨�̄�(𝑛)𝜒(𝑛)⟩ at vanishing
temperature are given by the step functions

⟨𝑛⟩ = Θ(𝜇 − 𝜇c), (54)

⟨�̄�(𝑛)𝜒(𝑛)⟩ = 1
𝑚
Θ(𝜇 − 𝜇c), (55)

with 𝜇c = ln(2𝑚) [41].
Figures 9 and 10 show the numerical results for ⟨𝑛⟩ and ⟨�̄�(𝑛)𝜒(𝑛)⟩ obtained by the GATRG

algorithm choosing 𝑚 = 104 with the bond dimension 𝐷 = 30. The number density is calculated
by the numerical derivative of the thermodynamic potential in terms of the chemical potential:

⟨𝑛⟩ = 1
𝑉

𝜕 ln 𝑍 (𝜇)
𝜕𝜇

≈ 1
𝑉

ln 𝑍 (𝜇 + Δ𝜇) − ln 𝑍 (𝜇)
Δ𝜇

. (56)

In the vicinity of 𝜇c, we have set Δ𝜇 = 4.0 × 10−3. The fermion condensate is also obtained via the
numerical derivative of the thermodynamic potential in terms of 𝑚:

⟨�̄�(𝑛)𝜒(𝑛)⟩|𝑚=104 =
1
𝑉

ln 𝑍 (𝑚 + Δ𝑚) − ln 𝑍 (𝑚)
Δ𝑚

����
𝑚=104

(57)

14



P
o
S
(
L
A
T
T
I
C
E
2
0
2
1
)
5
3
0

QFTs with TRG Shinichiro Akiyama, Yoshinobu Kuramashi and Yusuke Yoshimura

with Δ𝑚 = 1. Since there is little difference between the 𝐿 = 128 and 1024 results, the 𝐿 = 1024
lattice is sufficiently large to be estimated as the thermodynamic limit at vanishing temperature. The
numerical results well reproduce the analytical ones, including the location of 𝜇c = ln(2𝑚) = 9.903,
both for ⟨𝑛⟩ and ⟨�̄�(𝑛)𝜒(𝑛)⟩ in the heavy dense limit.

9.70 9.75 9.80 9.85 9.90 9.95 10.00
µ

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

<n
>

Heavy dense limit at T = 0
L = 128
L = 1024

Figure 9: Number density at 𝑚 = 104 and 𝑔0 = 32
on 1284 and 10244 lattices as a function of 𝜇 with
𝐷 = 30. Δ𝜇 = 4.0 × 10−3 in the vicinity of 𝜇c.
Green line denotes the step function in Eq. (54).
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L = 1024

Figure 10: Fermion condensate at 𝑚 = 104 and
𝑔0 = 32 on 1284 and 10244 lattices as a function of
𝜇 with 𝐷 = 30. Green line denotes the step function
in Eq. (55).

3.2.2 Chiral phase transition

The chiral condensate ⟨�̄�(𝑛)𝜒(𝑛)⟩, which is an order parameter in the chiral phase transition,
is defined by

⟨�̄�(𝑛)𝜒(𝑛)⟩ = lim
𝑚→0

lim
𝑉→∞

1
𝑉

𝜕

𝜕𝑚
ln 𝑍, (58)

in the cold region. We calculate ⟨�̄�(𝑛)𝜒(𝑛)⟩ with the numerical derivative of thermodynamic
potential at 𝑚 = 0.01 and 0.02 and their chiral extrapolation in the thermodynamic limit. The
numerical derivative is performed as

𝜕

𝜕𝑚
ln 𝑍 ≈ ln 𝑍 (𝑚 + Δ𝑚) − ln 𝑍 (𝑚)

Δ𝑚
, (59)

with Δ𝑚 = 0.01. Figure 11 shows the 𝜇 dependence of the chiral condensate at 𝑚 = 0.01 and
0.02 on the 𝑉 = 10244 lattice. The signals show slight fluctuations as a function of 𝜇 around
the transition point. Away from the transition point, we have found little response in ⟨�̄�(𝑛)𝜒(𝑛)⟩
to changes in mass. Figure 12 presents the results in the chiral limit obtained by the chiral
extrapolation with the data at 𝑚 = 0.01 and 0.02 on two volumes of 𝑉 = 1284 and 10244. The little
discrepancy between the 𝐿 = 128 and 1024 results means that the 𝐿 = 1024 result is essentially
in the thermodynamic limit. We observe the discontinuity from a finite value to zero for the chiral
condensate at 𝜇c = 3.0625 ± 0.0625, which is a clear indication of the first-order phase transition.
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Figure 11: Chiral condensate at 𝑚 = 0.01 and 0.02
on 10244 lattice as a function of 𝜇 with 𝐷 = 55.
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Figure 12: Chiral condensate extrapolated in the
chiral limit as a function of 𝜇 with 𝐷 = 55 on 1284

and 10244 lattices.

3.2.3 Equation of state

Equation of state is a relation between the pressure and the particle number density. In the
thermodynamic limit, the pressure 𝑃 is directly obtained from the thermodynamic potential:

𝑃 =
ln 𝑍
𝑉
, (60)

where the vast homogeneous system is assumed. In Fig. 13, we plot the 𝜇 dependence of the
pressure at𝑚 = 0.01. We find a kink behavior at 𝜇c = 3.0625±0.0625, where the chiral condensate
shows the discontinuity. Note that the 𝑚 = 0.02 result shows little difference from the 𝑚 = 0.01
one. Figure 14 shows the 𝜇 dependence of the particle number density ⟨𝑛⟩ obtained by Eq. (56).
We observe an abrupt jump from ⟨𝑛⟩ = 0 to ⟨𝑛⟩ = 1 at 𝜇c = 2.9375 ± 0.0625. This is another
indication of the first-order phase transition.
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Figure 13: Pressure at 𝑚 = 0.01 as a function of 𝜇
on 1284 and 10244 lattices.
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Figure 14: Particle number density at 𝑚 = 0.01 as
a function of 𝜇 on 1284 and 10244 lattices.
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3.3 (1+1)𝑑 Hubbard model

The Hubbard model has a similar path-integral form to the NJL model. The successful analysis
of the phase transition of the (3+1)𝑑 NJL model at high density and vanishing temperature with
the TRG method urges us to apply it to investigate the metal-insulator transition of the (1+1)𝑑
Hubbard model. Calculating the electron density as a function of the chemical potential 𝜇, we
have determined the critical value of the chemical potential 𝜇c and the critical exponent 𝜈 in the
thermodynamic limit at zero temperature and compare them with an exact solution based on the
Bethe ansatz [33, 34].

3.3.1 Formulation and numerical algorithm

For later convenience, we consider the partition function of the Hubbard model on the (𝑑 + 1)-
dimensional anisotropic lattice with the physical volume 𝑉 = 𝐿𝑑 × 𝛽, whose spatial extension is
defined as 𝐿 = 𝑎𝑁𝜎 with 𝑎 the spatial lattice spacing and 𝜎 labels the spatial direction. 𝛽 denotes
the inverse temperature, which is divided as 𝛽 = 1/𝑇 = 𝜖𝑁𝜏 . The path-integral expression of the
partition function is given by

𝑍 =
∫ ©«

∏
𝑛∈Λ𝑑+1

∏
𝑠=↑,↓

d�̄�𝑠 (𝑛)d𝜓𝑠 (𝑛)
ª®¬ e−𝑆 , (61)

where 𝑛 = ((𝑛𝜎)𝜎=1, · · · ,𝑑 , 𝑛𝜏) ∈ Λ𝑑+1(⊂ Z𝑑+1) specifies a position in the (𝑑 + 1)-dimensional
lattice. Since the Hubbard model describes the spin-1/2 fermions, they are labeled by 𝑠 =↑, ↓,
corresponding to the spin-up and spin-down, respectively. Introducing the notation,

𝜓(𝑛) =
(
𝜓↑(𝑛)
𝜓↓(𝑛)

)
, �̄�(𝑛) =

(
�̄�↑(𝑛), �̄�↓(𝑛)

)
, (62)

the action 𝑆 is given by4

𝑆 =
∑

𝑛∈Λ𝑑+1

𝜖

{
�̄�(𝑛)

(
𝜓(𝑛 + 𝜏) − 𝜓(𝑛)

𝜖

)
−𝑡

𝑑∑
𝜎=1

(
�̄�(𝑛 + �̂�)𝜓(𝑛) + �̄�(𝑛)𝜓(𝑛 + �̂�)

)
+ 𝑈

2
(
�̄�(𝑛)𝜓(𝑛)

)2 − 𝜇�̄�(𝑛)𝜓(𝑛)
}
. (63)

The choice of 𝑑 = 1 corresponds to the (1 + 1)-dimensional case. The kinetic term in the spatial
direction contains the hopping parameter 𝑡. The four-fermi interaction term represents the Coulomb
repulsion of electrons at the same lattice site. In addition to the target parameter set of (𝑈, 𝑡) = (4, 1),
we consider two simplified cases of (𝑈, 𝑡) = (4, 0) and (1,0) as a bench mark: The former is the
atomic limit and the latter represents the free electrons. The chemical potential is denoted by the
parameter 𝜇. Note that the half-filling is realized at 𝜇 = 𝑈/2 in the current definition. We assume
the periodic boundary condition in the spatial direction, 𝜓(𝑁𝜎 + 1, 𝑛𝜏) = 𝜓(1, 𝑛𝜏), while the anti-
periodic one in the temporal direction, 𝜓(𝑛𝜎 , 𝑁𝜏 + 1) = −𝜓(𝑛𝜎 , 1). In the following discussion,
we always set 𝑎 = 1.

4See Ref. [42] or Refs. [43, 44] for the conversion procedure from the operator formalism to the path-integral one.
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We employ the HOTRG algorithm [2] to evaluate the Grassmann tensor network representation
of Eq. (61), whose derivation is given in Ref. [32]. Using the HOTRG, we firstly carry out𝑚𝜏 times
of renormalization along the temporal direction. This procedure converts the initial Grassmann
tensor TΨ𝜎Ψ𝜏Ψ̄𝜏Ψ̄𝜎

into the coarse-grained one T ′
Ξ𝜎Ψ𝜏Ψ̄𝜏 Ξ̄𝜎

. Secondly, we employ the 2𝑑 HOTRG
procedure, regarding T ′

Ξ𝜎Ψ𝜏Ψ̄𝜏 Ξ̄𝜎
as the initial tensor, to obtain the coarse-grained Grassmann tensor

T ′′
Ξ′
𝜎Ψ′

𝜏Ψ̄′
𝜏 Ξ̄′

𝜎
. Note that with sufficiently small 𝜖 (< 1), little truncation error is accumulated with

the first 𝑚𝜏 times of renormalization along 𝜏-direction. This is because the contribution from the
spatial hopping terms of 𝑂 (𝜖) is smaller than that from the temporal one of 𝑂 (1). For the (1 + 1)𝑑
Hubbard model, we found that the optimal 𝑚𝜏 satisfied the condition 𝜖2𝑚𝜏 ∼ 𝑂 (10−1).

3.3.2 (𝑈, 𝑡) = (4, 0) and (0, 1) cases as a benchmark

We compare the numerical and analytic results for the 𝜇 dependence of ⟨𝑛⟩ in two extreme
cases of (𝑈, 𝑡) = (4, 0) and (0,1). The electron density ⟨𝑛⟩ is obtained by the numerical derivative
of the thermodynamic potential in terms of 𝜇:

⟨𝑛⟩ = 1
𝑉

𝜕 ln 𝑍 (𝜇)
𝜕𝜇

≈ 1
𝑉

ln 𝑍 (𝜇 + Δ𝜇) − ln 𝑍 (𝜇 − Δ𝜇)
2Δ𝜇

. (64)

We choose 𝜖 = 10−4 for the discretization parameter in the temporal direction and 𝐷 = 80 for the
truncation parameter after investigating the 𝜖 and 𝐷 dependences of the free energy systematically.
In Figs. 15 and 16 the numerical and analytic results show good consistencies over the wide range
of 𝜇 in both cases. Note that for the case of (𝑈, 𝑡) = (4, 0) in Fig. 15, we set 𝑚𝜏 = 24 because
this case is equivalent to the model defined on 𝑉 = 1 × 𝛽 lattice. Thanks to the vanishing hopping
structure in the spatial direction, we can always perform an exact tensor contraction in the temporal
direction. In Fig. 16 we employ finer resolution of 𝜇 around 1 ≲ |𝜇 | ≲ 2 in order to follow the
complicated 𝜇 dependence of ⟨𝑛⟩.
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Figure 15: Electron density ⟨𝑛⟩ in the (𝑈, 𝑡) =
(4, 0) case at 𝛽 = 1677.7216 with 𝜖 = 10−4 as a
function of 𝜇. The solid line shows the exact solution
and the blue circles are the results obtained by the
TRG method.
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Figure 16: Electron density ⟨𝑛⟩ in the (𝑈, 𝑡) =
(0, 1) case at 𝑁𝜎 = 4096 and 𝛽 = 1677.7216 with
𝜖 = 10−4 as a function of 𝜇. The solid line shows the
exact solution on 𝑁𝜎 = 4096 and the blue circles
are the results obtained by the TRG method with
𝐷 = 80.
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3.3.3 (𝑈, 𝑡) = (4, 1) case

We evaluate the electron density ⟨𝑛⟩ following the numerical derivative in Eq. (64). Figure 17
shows 𝜇 dependence of ⟨𝑛⟩ near the criticality on𝑉 = 4096×1677.7216 with 𝜖 = 10−4 and 𝐷 = 80.
The abrupt change of ⟨𝑛⟩ at 𝜇 ≈ 2.70 indicates a metal-insulator transition. We determine the
critical chemical potential 𝜇c(𝐷) and the critical exponent 𝜈 by fitting ⟨𝑛⟩ in the metallic phase
around the transition point with the following form:

⟨𝑛⟩ = 𝐴 + 𝐵 |𝜇 − 𝜇c(𝐷) |𝜈 , (65)

where 𝐴, 𝐵, 𝜇c(𝐷) and 𝜈 are the fit parameters. The solid curve in Fig. 17 shows the fitting result
over the range of 2.68 ≤ 𝜇 ≤ 3.00. We obtain 𝜇c(𝐷) = 2.698(1) and 𝜈 = 0.51(2) at 𝐷 = 80. Our
result for the critical exponent is consistent with the theoretical prediction of 𝜈 = 1/2.
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Figure 17: Electron density ⟨𝑛⟩ at 𝛽 = 1677.7216
with 𝜖 = 10−4 as a function of 𝜇. The bond dimen-
sion is chosen to be 𝐷 = 80.
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Figure 18: Critical chemical potential 𝜇c (𝐷) as a
function of 1/𝐷. Solid line represents the fitting
result with the function 𝜇c (𝐷) = 𝜇c + 𝑎𝐷−1. Dotted
curve also shows the fitting result with the function
𝜇c (𝐷) = 𝜇c + 𝑏𝐷−𝑐 .

Table 1: Critical chemical potential 𝜇c (𝐷) and critical exponent 𝜈 at each 𝐷.

𝐷 60 65 70 75 80 ∞
fit range [2.72,3.00] [2.70,3.00] [2.70,3.00] [2.69,3.00] [2.68,3.00] −
𝜇c(𝐷) 2.720(3) 2.710(1) 2.7068(8) 2.701(1) 2.698(1) 2.642(05)(13)
𝜈 0.49(3) 0.52(1) 0.50(2) 0.51(2) 0.51(2) −

In order to extrapolate the result of 𝜇c(𝐷) to the limit 𝐷 → ∞, we repeat the calculation
changing 𝐷. The numerical results are summarized in Table 1. In Fig. 18, we plot 𝜇c(𝐷)
as a function of 1/𝐷, providing two types of fittings. The solid line shows the fitting result
with the function 𝜇c(𝐷) = 𝜇c + 𝑎𝐷−1, which gives us 𝜇c = 2.642(5) and 𝑎 = 4.5(4) with
𝜒2/d.o.f = 0.447093. We have also fitted the data with the function 𝜇c(𝐷) = 𝜇c + 𝑏𝐷−𝑐 , shown
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as the dotted curve in Fig. 18, to estimate uncertainty in the choice of the fitting function. The
difference between the central values of 𝜇c obtained by these two types of fittings is considered to
be a systematic error. Finally, we obtain 𝜇c = 2.642(05)(13) as the value of lim𝐷→∞ 𝜇c(𝐷), which
shows good consistency with the exact solution of 𝜇c = 2.643 · · · based on the Bethe ansatz [33, 34].
Our results show the efficiency of the TRG approach to the Hubbard model, being free from the
sign problem.

3.4 (2+1)𝑑 Hubbard model

Having succeeded in analyzing the (1+1)𝑑 Hubbard model with the TRG method, we now
investigate the doping-driven metal-insulator transition in the (2+1)𝑑 case [35]. Since its phase
diagram is not well known so far, we calculate the electron density ⟨𝑛⟩ as a function of the chemical
potential 𝜇 choosing three values of the Coulomb potential with 𝑈 = 80, 8 and 2 as representative
cases of the strong, intermediate and weak couplings. The 𝜇 dependence of ⟨𝑛⟩ allows us to
determine the critical chemical potential 𝜇c at the doping-driven metal-insulator transition from the
half-filling plateau with ⟨𝑛⟩ = 1 to the metallic state with ⟨𝑛⟩ > 1.

3.4.1 Formulation and numerical algorithm

The path-integral formulation for the partion function of the Hubbard model is already given
in Sec. 3.3.1. The action in the (2 + 1)𝑑 case is obtained by choosing 𝑑 = 2 in Eq. (63). As
in the (1 + 1)𝑑 case, We employ the the periodic boundary condition in the spatial direction,
𝜓(𝑁𝑥 + 1, 𝑛𝑦 , 𝑛𝜏) = 𝜓(1, 𝑛𝑦 , 𝑛𝜏) and 𝜓(𝑛𝑥 , 𝑁𝑦 + 1, 𝑛𝜏) = 𝜓(𝑛𝑥 , 1, 𝑛𝜏), while the anti-periodic one
in the temporal direction, 𝜓(𝑛𝑥 , 𝑛𝑦 , 𝑁𝜏 + 1) = −𝜓(𝑛𝑥 , 𝑛𝑦 , 1).

The Grassmann tensor network representation of the partition function is obtained by following
the procedure in Ref. [37]. We evaluate the Grassmann tensor network generated by the rank-6
Grassmann tensor TΨ𝑥Ψ𝑦Ψ𝜏Ψ̄𝜏Ψ̄𝑦Ψ̄𝑥

employing the GATRG algorithm given in Ref. [7]. As in the
(1 + 1)𝑑 case, after we carry out 𝑚𝜏 times of renormalization along with the temporal direction,
the 3𝑑 ATRG procedure is applied as the spacetime coarse-graining. The optimal 𝑚𝜏 is found to
be satisfying the condition 𝜖2𝑚𝜏 ∼ 𝑂 (10−1) in the sense of preserved tensor norm.

3.4.2 Numerical results

The (𝑈, 𝑡) = (8, 1) case has been intensively investigated due to an expectation for a possible
existence of the superconducting phase. In order to check the volume dependence of the electron
density defined in Eq. (64), we plot the 𝜇 dependence of ⟨𝑛⟩ at 𝑈 = 8 in Fig. 19 changing the
lattice sizes with 𝜖 = 10−4, 𝑚𝜏 = 12 and 𝐷 = 80. The results on (𝑁𝑥 , 𝑁𝑦 , 𝑁𝜏) = (28, 28, 220)
and (212, 212, 224) are degenerate so that the latter lattice size, which corresponds to 𝑉 = 40962 ×
1677.7216, is sufficiently large to be identified as the thermodynamic and zero-temperature limit.
We observe the ⟨𝑛⟩ = 0 plateau for 𝜇 ≲ −4 and the ⟨𝑛⟩ = 2 one for 12 ≲ 𝜇. The half-filling state
is characterized by the plateau of ⟨𝑛⟩ = 1 in the range of 2 ≲ 𝜇 ≲ 6. These plateaus yield the
vanishing compressibility 𝜅 = 𝜕⟨𝑛⟩/𝜕𝜇 indicating the insulating states.

Figure 20 shows the 𝐷-dependence of ⟨𝑛⟩ around the metal-insulator transition with a much
finer resolution of Δ𝜇 than Fig. 19 focusing on the range of 6.0 ≤ 𝜇 ≤ 8.2. The results at 𝐷 = 80,
72, 64 and 56 are almost degenerate indicating the small 𝐷 dependence. The critical chemical
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potential 𝜇c is determined by the global fit with the following quadratic fitting function:

⟨𝑛⟩ = 1 + 𝛼 (𝜇 − 𝜇c(𝐷)) + 𝛽 (𝜇 − 𝜇c(𝐷))2 (66)

with 𝜇c(𝐷) = 𝜇c(𝐷 = ∞) + 𝛾/𝐷, where 𝛼, 𝛽, 𝛾 and 𝜇c(𝐷 = ∞) are the fit parameters. The
solid curves in Fig. 20 represent the fit results over the range of 6.3 ≤ 𝜇 ≤ 8.0. We obtain
𝜇c(𝐷 = ∞) = 6.43(4).

We repeat the same analysis for the weak coupling case at 𝑈 = 2, whose critical chemical
potential is found to be 𝜇c(𝐷 = ∞) = 1.30(6). The 𝜇 dependence of ⟨𝑛⟩ in the strong coupling
region is also investigated with the choice of 𝑈 = 80 at 𝐷 = 80. We obtain 𝜇𝑐 (𝐷 = 80) = 77.0(2)
for the critical chemical potential. Our results at𝑈 = 80, 8 and 2 show that |𝜇c−𝑈/2| monotonically
diminishes as 𝑈 decreases and seems to converge on |𝜇c −𝑈/2| = 0 at 𝑈 = 0. This indicates the
possibility that the model exhibits the metal-insulator transition at any finite 𝑈. This conclusion
may provide us a different scenario of the phase diagram from that predicted by the dynamical
mean-field theory (DMFT) [45]; there exists some𝑈c such that no metal-insulator transition occurs
with𝑈 < 𝑈c.

-4 0 4 8 12
µ
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0.5

1.0

1.5

2.0

<n
>

(Nx , Ny , Nτ) = (212 , 212 , 224)

(Nx , Ny , Nτ) = (28 , 28 , 220)

Figure 19: Electron density ⟨𝑛⟩ at 𝑈 = 8 on two
lattice sizes, 𝑉 = 2562 × 104.8576 and 40962 ×
1677.7216, as a function of 𝜇. The bond dimension
is set to be 𝐷 = 80.
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Figure 20: Electron density ⟨𝑛⟩ at 𝑈 = 8 on 𝑉 =
40962 × 1677.7216 with 𝜖 = 10−4 as a function of
𝜇. The bond dimensions are 𝐷 = 80, 72, 64 and 56.
Fit results are drawn by the solid lines for each bond
dimension.

4. Summary and outlook

Since the application of the TRG method to QFTs was initiated in 2012, we have made a lot
of progress in calculating the scalar, fermion, and gauge theories. We have developed efficient
algorithms for various QFTs and have also shown that the TRG method is essentially free from the
sign problem in the practical calculation. We are now able to investigate the 4𝑑 scalar and fermionic
theories. Aiming at the study of the finite density QCD, the only missing piece is an efficient
algorithm to treat the non-Abelian gauge theories on higher (≥ 3) dimensions, whose development
would be a primary task over the next few years.
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