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We study the nature of the phase transition at high temperature and high density in lattice gauge
theories by focusing on the probability distribution function, which represents the probability that
a certain density will be realized in a heat bath. The probability distribution function is obtained
by constructing a canonical partition function by fixing the number of particles from the grand
partition function. However, if the 𝑍3 center symmetry, which is important for understanding
the finite temperature phase transition of 𝑆𝑈 (3) lattice gauge theory, is maintained on a finite
lattice, the probability distribution function is always zero, except when the number of particles is
a multiple of 3. For𝑈 (1) gauge theory, this problem is more extreme. The probability distribution
becomes zero when the particle number is not zero. In this study, we find a solution to this
problem and propose a method of avoiding the sign problem, which is an important problem at
finite density, using the center symmetry. This problem is essentially the same as the problem that
the expectation value of the Polyakov loop is always zero when calculating with finite volume.
In the case of 𝑈 (1) lattice gauge theory with heavy fermions, numerical simulations are actually
performed, and we demonstrate that the probability distribution function at a finite density can be
calculated by the method proposed in this study.
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1. Introduction

Theoretical study of the probability distribution of particle density is important for investigating
the aspect of density fluctuation in the heat bath generated by heavy ion collision experiments and
finding the critical point at finite density. We develop a method for calculating the probability
distribution function by the first-principle calculation of lattice QCD. The probability distribution
function is obtained by constructing a canonical partition function by fixing the number of particles
from the grand partition function. The relation between the grand partition function 𝑍𝐺𝐶 (𝑇, 𝜇) with
the chemical potential 𝜇 and the canonical partition function 𝑍𝐶 (𝑇, 𝑁) with the particle number 𝑁
is given by the fugacity expansion,

𝑍𝐺𝐶 (𝑇, 𝜇) =
∑
𝑁

𝑍𝐶 (𝑇, 𝑁)𝑒𝑁 𝜇/𝑇 . (1)

The left-hand side of this equation 𝑍𝐺𝐶 (𝑇, 𝜇) is the normalization factor of the Boltzmann weight,
and is classified by 𝑁 in the right-hand side. Hence, 𝑍𝐶 (𝑇, 𝑁)𝑒𝑁 𝜇/𝑇 can be regarded as a weight
factor for each 𝑁 , and the probability distribution 𝑊 (𝑁) is in proportion to 𝑍𝐶 (𝑇, 𝑁)𝑒𝑁 𝜇/𝑇 . Thus,
the effective potential of 𝑁 can be defined as − ln𝑊 (𝑁) = − ln 𝑍𝐶 (𝑇, 𝑁) − 𝑁𝜇/𝑇 .

However, if the 𝑍3 center symmetry, which spontaneously breaks in the deconfinement phase
transition of 𝑆𝑈 (3) lattice gauge theory, is strictly maintained on a finite lattice, the canonical
partition function of QCD 𝑍𝐶 (𝑇, 𝑁) is zero when the number of particles is not a multiple of 3.
Moreover, in the case of 𝑈 (1) lattice gauge theory, the situation is extreme. The partition function
𝑍𝐶 (𝑇, 𝑁) is exactly zero for 𝑁 ≠ 0. This means that the existence probability of charged particles
is zero, which is unacceptable. To solve this problem, we focus on𝑈 (1) lattice gauge theory. In the
calculation of 𝑍𝐶 , it is essential to break the center symmetry adding a small external field. Then,
we find that the central symmetry can be used to avoid sign problems.

In the next section, we explain the canonical partition function when the theory has the
center symmetry. We calculate the canonical partition function for 𝑈 (1) gauge theory with heavy
dynamical fermions in Sec. 3. We also propose a method to avoid the sign problem using the 𝑈 (1)
center symmetry. Our conclusions are given in Sec. 4

2. Center symmetry breaking in 𝑈 (1) gauge theory

The grand partition function is

𝑍𝐺𝐶 (𝑇, 𝜇) =
∫

D𝑈 (det 𝑀 (𝜅, 𝜇))𝑁f 𝑒−𝑆𝑔 (2)

for the 𝑁f degenerate flavor case. Here, 𝑆𝑔 is the gauge action and 𝑀 (𝜅, 𝜇) is the fermion kernel.
The fermion determinant det 𝑀 can be expressed as the sum of Wilson loops. We perform a hopping
parameter expansion of ln det 𝑀 . Then, the 𝑛th-order Taylor expansion coefficients are given by the
sum of 𝑛-step connected Wilson loops [1–5]. When the hopping parameter 𝜅 is small, the leading
order contribution consists of the plaquette 𝑃, and the Polyakov loop Ω [2, 5]:

ln det 𝑀 (𝜅, 𝜇) = 96𝑁site𝜅
4𝑃 + 2𝑁𝑡+1𝑁3

𝑠

(
𝜅𝑁𝑡 𝑒𝜇/𝑇Ω + 𝜅𝑁𝑡 𝑒𝜇/𝑇Ω∗

)
+ · · · (3)
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Figure 1: Distribution of Polyakov loops in the complex plane generated by simulations of 𝑈 (1) lattice
gauge theory at 𝛽 = 0.90 (left) and 1.10 (right). The temporal lattice size 𝑁𝑡 is 4. Purple, blue, green and
red symbols are the results of the spatial lattice size 𝑁𝑠 = 12, 16, 24 and 32, respectively.

for the standard Wilson fermion on a lattice with the spatial size 𝑁𝑠 and temporal size 𝑁𝑡 . At
finite density with the chemical potential 𝜇, the 𝜇-dependence of each Wilson loop term, which is
wound 𝑚 times by the anti-periodic boundary condition in the time direction, appears as a factor
𝑒𝑚𝜇/𝑇 because the hopping term in the time direction is (1 − 𝛾4)𝑈𝑥,4𝑒

𝜇𝑎 or (1 + 𝛾4)𝑈†
𝑥,4𝑒

−𝜇𝑎

and (𝑒𝜇𝑎)𝑁𝑡 = 𝑒𝜇/𝑇 , where 𝑈𝑥,4 is a link variable and 𝑎 is the lattice spacing. We classify these
expansion terms by the winding number 𝑚. If we reconstruct the expansion of ln det 𝑀 into the
expansion of det 𝑀 , 𝑍𝐺𝐶 is expressed in the form of the fugacity expansion, Eq. (1). Therefore, the
fugacity expansion is a winding number expansion.

Under the 𝑈 (1) center transformation: the time components of all link variables in one time
slice are changed as 𝑈( ®𝑥,𝑡) ,4 → 𝑒𝑖 𝜃𝑈( ®𝑥,𝑡) ,4, 𝑍𝐶 (𝑇, 𝑁) changes as

𝑍𝐶 (𝑇, 𝑁) → 𝑒𝑖𝑁 𝜃𝑍𝐶 (𝑁,𝑇), (4)

since 𝑍𝐶 is multiplied by 𝑒𝑖 𝜃 𝑁 times at the time slice in total. Because 𝑆𝑔 and the integral measure
are invariant, 𝑍𝐶 (𝑇, 𝑁) = 𝑒𝑖𝑁 𝜃𝑍𝐶 (𝑁,𝑇). Thus, the canonical partition function is zero,

𝑍𝐶 (𝑇, 𝑁) =
1

2𝜋

∫ 2𝜋

0
𝑒𝑖𝑁 𝜃𝑍𝐶 (𝑁,𝑇)𝑑𝜃 = 0, (5)

except for 𝑁 = 0. This means that there cannot exist particles that interact with the gauge field.
In the confined phase, the probability of existence of charged particles is zero because of the
confinement. However, charged particles must be exist in the deconfinement phase. 𝑍𝐶 (𝑇, 𝑁) = 0
is unacceptable. In such a case, the grand partition function 𝑍𝐺𝐶 (𝑇, 𝜇) is equal to 𝑍𝐶 (𝑇, 0), and
𝑍𝐺𝐶 does not depend on the chemical potential.

This problem is a common problem when calculating the expectation value of the order
parameter for investigating spontaneous symmetry breaking. As seen in Eq. (3), the first nontrivial
term of ln det 𝑀 is proportional to Ω 𝑒𝜇/𝑇 when 𝜅 is small. Thus, the canonical partition of 𝑁 = 1
with a small 𝜅 is proportional to 〈Ω〉, where the expectation value is computed in a quenched
simulation. We perform quenched QCD simulations. Figure 1 shows the distribution of the
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Figure 2: Expectation value of the Polyakov loop as a function of the hopping parameter 𝜅 measured at
𝛽 = 0.90 (left) and 1.10 (right) on 𝑁3

𝑠 × 4 lattices with 𝑁𝑠 = 12 (purple), 16 (blue), 24 (green) and 32 (red).

Polyakov loop in the complex plane. The left panel shows the result of the confinement phase
(symmetric phase) at an inverse gauge coupling 𝛽 = 1/𝑔2 = 0.90, and the right panel shows the
result of the deconfinement phase (broken phase) at 𝛽 = 1.10. The temporal lattice size 𝑁𝑡 is fixed
to be 4 and four spatial lattice sizes 𝑁𝑠 are adopted. Purple, blue, green and red lines are 𝑁𝑠 = 12,
16, 24 and 32, respectively.

The Polyakov loop is an order parameter of the deconfinement phase transition. In the decon-
finement phase, the center symmetry is spontaneous broken and 〈Ω〉 should be nonzero. However,
because of the center symmetry, the probability distribution is symmetric under 𝑈 (1) transforma-
tion: Ω → 𝑒𝑖 𝜃Ω for an arbitrary real number 𝜃, as shown in Fig. 1. Therefore, the expectation
value of Ω is always zero even in the broken phase. The symmetry does not break in an actual
simulation with finite volume. Therefore, to discuss spontaneous symmetry breaking, it is required
to break the center symmetry adding an explicit breaking term in the action. Then, the breaking
term dependence and spatial volume dependence are investigated. If 〈Ω〉 is non-zero in the double
limit of zero breaking term and infinite volume, we identify that spontaneous symmetry breaking
has occurred.

To break the center symmetry, we add a heavy fermion having an infinitesimal 𝜅. We approx-
imate the fermion determinant with the leading term of the hopping parameter expansion given in
Eq. (3) . The plaquette term can be absorbed into the gauge action by shifting 𝛽 → 𝛽∗ = 𝛽+16𝑁f𝜅

4.
The expectation value is computed by the reweighting method where the reweighting factor is the
Polyakov loop term,

〈ReΩ〉 ≈ 1
𝑍𝐺𝐶

∫
D𝑈Re Ω 𝑒𝜖 𝑉ReΩ𝑒−𝑆𝑔 =

⟨
ReΩ 𝑒𝜖 𝑉ReΩ⟩⟨

𝑒𝜖 𝑉ReΩ
⟩ , (6)

where 𝜖 = 4 × 2𝑁𝑡 𝜅𝑁𝑡 , 𝑉 = 𝑁3
𝑠 and 〈· · · 〉 means the average over quenched configurations [1].

Using the data of 𝑁𝑡 = 4 in Fig. 1, the expectation value of ReΩ is computed. The number of
Monte-Caro updates for each 𝛽 is 200,000 for 𝑁𝑠 = 12, 16 and 1,000,000 for 𝑁𝑠 = 24, 32. We plot
the results in Fig. 2 as a function of 𝜅𝑁𝑡 . The left figure is the result of the confinement phase at
𝛽 = 0.90. Although the results of 𝑁𝑠 = 12 (purple), 16 (blue), 24 (green) and 32 (red) are plotted,
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no volume dependence is seen. For this case, it is not necessary to take the volume infinity limit,
thus 〈ReΩ〉 ∼ 𝜅𝑁𝑡 and 〈ReΩ〉 vanishes in the 𝜅 → 0 limit in the confinement phase (symmetric
phase). On the other hand, the right figure is the result of the deconfinement phase at 𝛽 = 1.10. In
the deconfinement phase (broken phase), Polyakov loop behaves as 〈ReΩ〉 ∼ 𝑉𝜅𝑁𝑡 . Of course, if 𝑉
is fixed, 〈ReΩ〉 becomes always zero in the limit of 𝜅 = 0. However, in the thermodynamic limit
𝑉 → ∞ and 𝜅 → 0 limit, this figure suggests that 〈ReΩ〉 becomes a non-trivial finite value in the
broken phase.

Furthermore, when 𝜅 is sufficiently small, the Polyakov loop can be evaluated by a 𝜅𝑁𝑡

expansion. Using the distribution function of the Polyakov loop in the complex plane, the expectation
value can be calculated as follows,

〈ReΩ𝑛〉 =
1

𝑍𝐺𝐶

∫
D𝑈 ReΩ𝑛 𝑒𝜖 𝑉ReΩ𝑒−𝑆𝑔 =

∫
|Ω|𝑁 cos(𝑁𝜙) 𝑒𝜖 𝑉 |Ω | cos 𝜙𝑊 ( |Ω|) 𝑑𝜙𝑑 |Ω|

=
2𝜋(𝜖𝑉)𝑛

2𝑛𝑛!

∫
|Ω|2𝑛𝑊 (|Ω|) 𝑑 |Ω| + · · · , (7)

where 𝑊 (|Ω|) is the Polyakov loop distribution function that is independent of the complex phase
and is a function of the absolute value |Ω|. 𝜙 is the complex phase of Ω. 〈ReΩ𝑛〉 becomes zero
in the limit of 𝜖 → 0 for finite 𝑉 due to the cancelation of the phase 𝜙. However, after integrating
𝜙, the complex phase of Ω have been already removed. Although, in the double limit, the value of
𝜖𝑉 cannot be determined, the leading term of a ratio 〈ReΩ4〉/〈ReΩ2〉2 does not depend on 𝜖𝑉 , for
example. The volume dependence of such a quantity is expected to be small. The explicit breaking
term is also important for the calculation of the canonical partition function. As discussed below,
this method can be applied to solve the sign problem in the calculation of the derivative of the
canonical partition function.

3. Canonical partition function with a saddle point approximation

When the probability distribution function is maximum, the chemical potential satisfies
−𝑑 ln𝑊/𝑑𝜌 = −𝑑 ln 𝑍𝐶/𝑑𝜌 − 𝑉𝜇/𝑇 = 0, where 𝑉 = 𝑁3

𝑠 and 𝜌 = 𝑁/𝑉 . Thus, the chemical
potential with the maximum probability at a density 𝜌 is 𝜇/𝑇 = −(1/𝑉)𝑑 ln 𝑍𝐶/𝑑𝜌. This derivative
is given by the ratio (𝑑 ln 𝑍𝐶/𝑑𝜌)/𝑍𝐶 . Both numerator and denominator are exactly zero for 𝑁 ≠ 0
due to the 𝑈 (1) center symmetry. Thus, 𝑑 ln 𝑍𝐶/𝑑𝜌 cannot be computed without breaking the
center symmetry in𝑈 (1) lattice gauge theory. To compute 𝑍𝐶 , we apply the method we introduced
in the calculation of 〈ReΩ𝑛〉 in Eq. (7).

For simplicity, we calculate the canonical partition function by a saddle point approximation
proposed in Ref. [6]. The derivative of 𝑍𝐶 is obtained by the following equation,

− 1
𝑉

𝜕 ln 𝑍C(𝑇, 𝜌𝑉)
𝜕𝜌

≈

⟨
𝑧0 exp [𝑉 (𝐷 (𝑧0) − 𝜌𝑧0)] 𝑒−𝑖𝛼/2

√
1

𝑉 |𝐷′′ (𝑧0) |

⟩
⟨
exp [𝑉 (𝐷 (𝑧0) − 𝜌𝑧0)] 𝑒−𝑖𝛼/2

√
1

𝑉 |𝐷′′ (𝑧0) |

⟩ . (8)

Here, 𝐷 (𝑧) = ln[det 𝑀 (𝜅, 𝜇)/det 𝑀 (𝜅0, 0)]/𝑉 , and 𝐷 ′′ = 𝑑2𝐷/𝑑𝑧2 = |𝐷 ′′ |𝑒𝑖𝛼. 𝑧0 is the saddle
point which satisfies 𝐷 ′(𝑧0) = 𝑑𝐷/𝑑𝑧(𝑧0) = 𝜌. This bracket 〈· · · 〉 means the expected value
calculated at 𝜅0 and 𝜇 = 0. The saddle point approximation is valid when the spatial volume is
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large. The numerical computation of this equation is possible by the ordinary Monte Carlo method,
though this calculation has the sign problem and the overlap problem.

We calculate the derivative of 𝑍𝐶 in 𝑈 (1) lattice gauge theory for the case that dynamical
fermions are heavy, i.e. 𝜅 is small, and show that this calculation is possible avoiding the problem
of the center symmetry and the sign problem. To investigate the region with a small 𝜅, we evaluate
𝐷 (𝑧) by the hopping parameter expansion on each configuration,

𝐷 (𝑧) = 96𝑁𝑡𝑁f𝜅
4𝑃 + 2 × 2𝑁𝑡𝑁f𝜅

𝑁𝑡 [𝑒𝑧Ω + 𝑒−𝑧Ω∗] + · · · , (9)
𝐷 ′(𝑧) = 2 × 2𝑁𝑡𝑁f𝜅

𝑁𝑡 [𝑒𝑧Ω − 𝑒−𝑧Ω∗] + · · · , 𝐷 ′′(𝑧) = 2 × 2𝑁𝑡𝑁f𝜅
𝑁𝑡 [𝑒𝑧Ω + 𝑒−𝑧Ω∗] + · · · ,

and we perform quenched simulations with 𝜅0 = 0. The first term proportional to 𝑃 can be absorbed
by the shift of 𝛽 in the quenched simulations, and the shift is very small. We thus omit this term.
The saddle point 𝑧0 = 𝑥0 + 𝑖𝑦0 is given by

2 × 2𝑁𝑡𝑁f𝜅
𝑁𝑡 (𝑒𝑧0Ω − 𝑒−𝑧0Ω∗) = 𝜌 (10)

on each configuration. Because 𝜌 is a real number, the complex phase of (𝑒𝑥0+𝑖𝑦0Ω − 𝑒−𝑥0−𝑖𝑦0Ω∗)
is zero. The imaginary part of saddle point 𝑦0 is determined as

𝑦0 = − arctan
(
ImΩ
ReΩ

)
= −ArgΩ. (11)

Then, the real part 𝑥0 satisfies 2 × 2𝑁𝑡𝑁f𝜅
𝑁𝑡 [𝑒𝑥0 |Ω| − 𝑒−𝑥0 |Ω|] = 𝜌, and thus

𝑥0 = arcsinh
(

𝜌

4 × 2𝑁𝑡𝑁f𝜅𝑁𝑡 |Ω|

)
. (12)

Using the saddle point approximation, the derivative of 𝑍𝐶 is obtained by

− 1
𝑉

𝜕ln𝑍𝐶 (𝑇,𝑉𝜌)
𝜕𝜌

≈ 〈𝑧0 exp(𝐹 + 𝑖𝜃)〉
〈exp(𝐹 + 𝑖𝜃)〉 , (13)

where 𝐹 and 𝜃 are real numbers and are given as

𝐹 = 𝑉 (𝐷 (𝑧0) − 𝜌𝑥0) −
1
2

ln[𝑉𝐷 ′′(𝑧0)], 𝜃 = −𝑉𝜌 ArgΩ = −𝑉𝜌 arctan
(
Ω𝐼

Ω𝑅

)
, (14)

with

𝐷 (𝑧0) = 96𝑁𝑡𝑁f𝜅
4𝑃 + 4 × 2𝑁𝑡𝑁f𝜅

𝑁𝑡 |Ω| cosh 𝑥0, 𝐷 ′′(𝑧0) = 4 × 2𝑁𝑡𝑁f𝜅
𝑁𝑡 |Ω| cosh 𝑥0. (15)

We note that, omitting the plaquette term, 𝑥0 and 𝐹 are functions of |Ω| and are independent of
ArgΩ, whereas 𝜃 is a function of ArgΩ. In simulations of 𝑈 (1) gauge theory without dynamical
fermions, the probability distribution of Ω is 𝑈 (1) symmetric due to the center symmetry. Thus,
the numerator and denominator of Eq. (13) are exactly zero because of the phase factor 𝑒𝑖 𝜃 , and
Equation (13) cannot be calculated. This is, so to say, the ultimate sign problem.

This problem is solved by adding an additional fermion with a large mass, as in the case of
discussing the expectation value of Polyakov loop. As we calculated Eq. (7), we consider the 𝑈 (1)
symmetric distribution function of the Polyakov loop and integrate cos(𝑁𝜙) with respect to the
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Figure 3: Left: Real part of the saddle point 𝑥0 as a function of the absolute value of Polyakov loop for
𝑁 = 10, 50, 100 and 150. Right: Effective potential of the Polyakov loop defined in Eq. (17) at 𝛽 = 1.00.

complex phase 𝜙 = ArgΩ. Then,
∫

cos(𝑁𝜙) 𝑒𝜖 𝑉 |Ω | cos 𝜙𝑑𝜙 = 2𝜋 (𝜖𝑉)𝑁 |Ω|𝑁 /(2𝑁𝑁!) + · · · . Thus,
for a small 𝜖 , the derivative of 𝑍𝐶 becomes

− 1
𝑉

𝜕 ln 𝑍𝐶 (𝑇,𝑉𝜌)
𝜕𝜌

≈
∫
𝑥0 𝑒

𝐹𝑊 (|Ω|) 2𝜋
2𝑁 𝑁 ! (𝜖𝑉)

𝑁 |Ω|𝑁 𝑑 |Ω|∫
𝑒𝐹𝑊 (|Ω|) 2𝜋

2𝑁 𝑁 ! (𝜖𝑉)𝑁 |Ω|𝑁 𝑑 |Ω|
=

∫
𝑥0 𝑒

−𝑉eff 𝑑 |Ω|∫
𝑒−𝑉eff 𝑑 |Ω|

, (16)

where the effective potential 𝑉eff (|Ω|) is defined as

𝑉eff ( |Ω|) = − ln𝑊 ( |Ω|) − 𝐹 − 𝑁 ln |Ω|. (17)

The factor (𝜖𝑉)𝑁 cancels in Eq. (16). Here, a term of
∫
𝑦0 sin(𝑁𝜙)𝑑𝜙 is omitted, since this term

depend on the upper bound and lower bound of the integral of 𝜙 and vanishes if we impose an
appropriate dumping factor in the limit of 𝜙 → ±∞.

We perform simulations of 𝑈 (1) lattice gauge theory with the standard Wilson gauge action at
several inverse gauge couplings 𝛽 = 1/𝑔2 near the deconfining transition point 𝛽𝑐 . The lattice size is
𝑁3
𝑠 ×𝑁𝑡 = 243 × 6. Using a pseudo heat bath algorithm, the configurations are generated at thirteen

𝛽 values in the range from 𝛽 = 1.0000 to 1.0240. The data are taken until 1,000,000 heat-bath
sweeps at each 𝛽. The multipoint reweighting method are used to combine the data generated at
different 𝛽. The phase transition at 𝛽 ≈ 1.0096 is very weak first order transition, where two phases
coexist. We adopt 𝑁f = 2 and 𝜅6 = 1.92 × 10−10. The real part of saddle point 𝑥0 for each |Ω| and
𝑁 = 𝜌𝑉 is given by Eq. (12), which is plotted in the left panel of Fig. 3.

To compute the Polyakov loop distribution function 𝑊 (|Ω|), we use a Gaussian approximation
for the delta function: 𝛿(𝑥) ≈ exp[−(𝑥/Δ)2]/(Δ√𝜋) with Δ = 0.0025. Also, 𝐹 of Eq. (14) is
calculated from only |Ω| and 𝜌. The result of the effective potential 𝑉eff (|Ω|) in Eq. (16) is plotted
in the right panel of Fig. 3 for 𝑁 = 10, 50, 100, and 150 when 𝛽 = 1.00. When the spatial volume
is sufficiently large, Equation (16) means that −(1/𝑉)𝑑 ln 𝑍𝐶/𝑑𝜌 is the value of 𝑥0 at |Ω| where the
effective potential 𝑉eff (|Ω|) is the minimum. The minimum point increases as 𝑁 increases. On the
other hand, 𝑥0 increases as 𝑁 increases and decreases as |Ω| increases.

We then calculate the derivative of the canonical partition function. In the actual calculation,
we remove 𝑊 ( |Ω|) as 𝑊 (|Ω|)𝑑 |Ω| → D𝑈 so as not to use the approximate delta function.
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Figure 4: Chemical potential 𝜇/𝑇 for which the number of particles with the maximum generation probability
is 𝑁 for each 𝛽 in 𝑈 (1) lattice gauge theory.

−(1/𝑉)𝑑 ln 𝑍𝐶/𝑑𝜌 is 𝜇/𝑇 where the density with the maximum generation probability is 𝜌, and is
computable without the sign problem. We plot the result in Fig. 4 for 𝛽 = 0.996 – 1.012. When
𝛽 is in the deconfined phase at zero density, the chemical potential is monotonically increasing.
However, in the case of the confined phase at zero density, as the density increases, the chemical
potential drops once and increases again. This means that there are multiple 𝑁’s for a given 𝜇/𝑇 .
This is a sign when crossing the first-order phase transition.

4. Conclusions

We studied the probability distribution function of particle density. The probability distribution
function is obtained by constructing the canonical partition function by fixing the number of particles
from the grand partition function. However, if the system has the center symmetry on a finite lattice,
the canonical partition function is zero when the number of particles is not a multiple of 3 for 𝑆𝑈 (3)
gauge theory and when the number of particles is not zero for 𝑈 (1) gauge theory. Thus, the
probability distribution function is zero in these cases. This situation is natural in the confined
phase, but is unacceptable in the deconfinement phase because there should be states of various
particle numbers.

This problem is essentially the same as the problem that the expectation value of the Polyakov
loop is always zero when calculating with finite volume, as long as the center symmetry is not
broken. To solve this problem, it is necessary to add an infinitesimal external field to break the
symmetry and take the limit of infinite volume. Moreover, in the case of 𝑈 (1) gauge theory, the
sign problem can be solved using the 𝑈 (1) center symmetry at the same time.

We performed numerical simulations of 𝑈 (1) lattice gauge theory near the deconfinement
phase transition point. When the dynamical fermions are heavy, we actually demonstrated that the
calculation of the probability distribution function at finite density is possible using the method
proposed in this study. We calculated the derivative of the canonical partition function using a
saddle point approximation [6], and found that our method to avoid the sign problem works well.
The derivative is equal to 𝜇/𝑇 for which the density of particles with the maximum generation

8
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probability is 𝜌. From the results of 𝜌 vs. 𝜇/𝑇 , changes in the nature of the phase transition can be
investigated. The application of this method to QCD (𝑆𝑈 (3) gauge theory) is a future work.
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