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We consider a massive fermion system having a curved domain-wall embedded in a square lattice.
In a similar way to the conventional flat domain-wall fermion, chiral massless modes appear at the
domain-wall but these modes feel "gravity" through the induced spin connections. In this work,
we embed 𝑆1 and 𝑆2 domain-walls into a Euclidean space and show how the gravity is detected
from the spectrum of the Dirac operator.
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1. Introduction

Formulating lattice field theory with a general curved metric has been a challenge, in contrast
to the great success of gauge theory on a square lattice, of which continuum limit is a flat torus. In
previous studies [1–5], they tried to use triangular lattices to represent dynamical/non-dynamical
curved metric by changing the lengths or angles of the links.

In this work, we attempt a fermion formulation with a nontrivial spin connection but still
staying on a square lattice. In mathematics, it is known that every curved compact manifold can
be embedded into a higher-dimensional flat Euclidean space [6]. If we regularize this higher-
dimensional Euclidean space by a square lattice and localize a field on a curved sub-manifold
embedded in it, the fermion field would feel gravity or curvature through the spin connection
induced by the embedding.

Such an embedding can be realized by the so-called domain-wall fermion formulation [7–10].
Changing the sign of the mass on a co-dimension one sub-manifold, a massless fermion is localized
on the domain-wall. In this work, we investigate a fermion system both in continuum and on a
lattice when the domain-wall is nontrivially curved. In fact, in a similar lattice model of condensed
matter physics, it has been reported that an effective spin connection is induced [11–14], in the edge
modes appearing on a curved surface.

Specifically we embed a circle 𝑆1 in R2 or 2-dimensional square lattice, as well as 𝑆2 in R3 and
its lattice counter part. We find that a nontrivial spin connection is induced, and it is reflected in the
eigenvalue spectrum of the domain-wall Dirac operator. The analytic computation in continuum
and numerical lattice results reasonably agree, which implies that a classical naive continuum limit
of the higher dimensional square lattice is valid.

2. 𝑆1 domain-wall

In this section, we embed 𝑆1 with radius 𝑟0 as a domain wall into 2-dimensional Euclidean
space R2. We study the spectrum of the Dirac operator focusing on the edge-localized states on
the domain-wall. We show that the edge modes are massless and follow a Dirac equation with a
nontrivial spin connection, which is effectively induced by the embedding.

2.1 Continuum analysis

First we consider a Hermitian Dirac operator

𝐻 = 𝜎3

(
𝜎1

𝜕

𝜕𝑥
+ 𝜎2

𝜕

𝜕𝑦
+ 𝑀𝜖

)
=

(
𝑀𝜖 𝑒−𝑖 𝜃 ( 𝜕

𝜕𝑟 − 𝑖
𝑟

𝜕
𝜕𝜃 )

−𝑒𝑖 𝜃 ( 𝜕
𝜕𝑟 + 𝑖

𝑟
𝜕
𝜕𝜃 ) −𝑀𝜖

)
, (1)

in continuum theory, where an 𝑆1 domain-wall with radius 𝑟0 is put by the sign function 𝜖 =
sign(𝑟 − 𝑟0). Since this Dirac operator commutes with the total angular momentum operator
𝐽 = −𝑖 𝜕

𝜕𝜃 + 1
2𝜎3, the solutions to the Dirac equation are the simultaneous eigenstates of 𝐻 and 𝐽 1.

1In the relativistic theory, where we treatR2 as a space-time, 𝐻 is not a Hamiltonian and 𝐽 is not an angular momentum
in the spatial directions. However in our polar coordinate notation, the spatial notation is easier to understand. Here
and in the following, we, therefore, call the eigenvalue of 𝐻 "energy", that of 𝐽 "angular momentum" and that of 𝛾normal
given in Eq. (7) "chirality".
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Below, let energy 𝐸 be an eigenvalue of 𝐻 and we represent that 𝑗 = ± 1
2 ,±

3
2 , · · · are eigenvalues of

𝐽. Note that the energy 𝐸 of edge states must satisfy 𝐸2 < 𝑀2.
In the interior of the domain-wall (𝑟 < 𝑟0), the eigenfunction with the energy 𝐸 and total

angular momentum 𝑗 = ± 1
2 ,±

3
2 , · · · is written by

𝜓
𝐸, 𝑗
𝑟<𝑟0 =

(√
𝑀2 − 𝐸2𝐼 𝑗− 1

2
(
√
𝑀2 − 𝐸2𝑟)𝑒 ( 𝑗− 1

2 )𝑖 𝜃

(𝑀 + 𝐸)𝐼 𝑗+ 1
2
(
√
𝑀2 − 𝐸2𝑟)𝑒 ( 𝑗+ 1

2 )𝑖 𝜃

)
. (2)

Similarly, the eigenfunction in the exterior 𝑟 > 𝑟0 with the energy 𝐸 = ±𝜆 (0 < 𝜆 < 𝑀) and total
angular momentum 𝑗 is given by

𝜓
𝐸, 𝑗
𝑟>𝑟0 =

(
(𝑀 + 𝐸)𝐾 𝑗− 1

2
(
√
𝑀2 − 𝐸2𝑟)𝑒 ( 𝑗− 1

2 )𝑖 𝜃
√
𝑀2 − 𝐸2𝐾 𝑗+ 1

2
(
√
𝑀2 − 𝐸2𝑟)𝑒 ( 𝑗+ 1

2 )𝑖 𝜃

)
. (3)

The eigenfunctions Eqs. (2) and (3) are exponentially localized at 𝑟 = 𝑟0. From the continuity
requirement of the wave functions at 𝑟 = 𝑟0, we have a condition

𝐼 𝑗− 1
2

𝐼 𝑗+ 1
2

𝐾 𝑗+ 1
2

𝐾 𝑗− 1
2

(
√
𝑀2 − 𝐸2𝑟0) =

𝑀 + 𝐸
𝑀 − 𝐸 . (4)

In the large mass limit or 𝑀 ≫ 𝐸 , the energy eigenvalue converges to

𝐸 ≃ 𝑗

𝑟0

(
𝑗 = ±1

2
,±3

2
, · · ·

)
. (5)

where we can recognize the gap from zero as a gravitational effect on the curved domain-wall.
The normalized eigenfunction in that limit is also simplified as2

𝜓
𝐸, 𝑗
edge ≃

√
𝑀

4𝜋𝑟
𝑒−𝑀 |𝑟−𝑟0 |

(
𝑒𝑖 ( 𝑗−

1
2 ) 𝜃

𝑒𝑖 ( 𝑗+
1
2 ) 𝜃

)
, (6)

which is chiral with respect to a gamma matrix facing the normal direction to the domain-wall,

𝛾normal :=𝜎1 cos 𝜃 + 𝜎2 sin 𝜃, (7)

with the eigenvalue +1. Since the edge modes are localized at the 𝑆1 domain-wall, it is natural to
assume that the effective action of the edge modes is written as that of a one-dimensional Dirac
fermion. To confirm this, let us take a linear combination of the edge modes by

𝜓edge =

√
𝑀

4𝜋𝑟
𝑒−𝑀 |𝑟−𝑟0 |

(
1
𝑒𝑖 𝜃

)
𝜒(𝜃), (8)

𝜒(𝜃) =
∑
𝑗

𝛼 𝑗𝑒
𝑖 ( 𝑗− 1

2 ) 𝜃 , (9)

where 𝛼𝑖 is a complex number coefficient. The effective action is then obtained as

lim
𝑀→∞

∫
𝑑𝑥1𝑑𝑥2𝜓†

edge𝐻𝜓edge =
∫ 2𝜋

0
𝑑𝜃𝜒†

1
𝑟0

(
−𝑖 𝜕
𝜕𝜃

+ 1
2

)
𝜒, (10)

2This approximation is only valid at 𝑟 ∼ 𝑟0.
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where the effective Dirac operator can be read as 𝐽 = −𝑖 𝜕
𝜕𝜃 + 1

2𝜎3 for states with 𝜎3 = 1.
In Eq. (10), the covariant derivative contains a nontrivial gauge potential 1/2𝑟0, which can be

regarded as the induced spin connection3 field. It is also clear that this connection is the origin of
the energy gap from zero. Namely, the edge localized fermion feels induced gravity from the curved
domain-wall. Since the gravity in one dimension is locally trivial, we can absorb the effect by a
gauge transformation 𝜒 → 𝜒′ = exp(−𝑖𝜃/2)𝜒 and action becomes that of a free Dirac fermion,∫ 2𝜋

0
𝑑𝜃𝜒†

1
𝑟0

(
−𝑖 𝜕
𝜕𝜃

+ 1
2

)
𝜒 =

∫ 2𝜋

0
𝑑𝜃 (𝜒′)† 1

𝑟0

(
−𝑖 𝜕
𝜕𝜃

)
𝜒′. (11)

The global effect of gravity is still visible as the anti-periodicity of 𝜒′, which makes the same energy
gap as the one with 𝜒.

2.2 Lattice analysis

Let (Z/𝑛Z)2 be a 2-dimensional square lattice space. 0 ≤ 𝑥, 𝑦 ≤ 𝑛 − 1 denotes coordinates for
(Z/𝑛Z)2, where 𝑛 means the lattice size. We impose the periodic boundary condition in the 𝑥 and
𝑦 directions as

𝑥 = 0 ∼ 𝑛, 𝑦 = 0 ∼ 𝑛. (12)

On this lattice, we consider a Wilson Dirac operator with a domain-wall mass,

𝐻 = 𝜎3

( ∑
𝑖=1,2

[
𝜎𝑖

∇ 𝑓
𝑖 + ∇𝑏

𝑖

2
− 𝑟

2
∇ 𝑓
𝑖 ∇

𝑏
𝑖

]
+ 𝜖𝐴𝑀

)
(13)

(∇ 𝑓
𝑖 𝜓)𝑥 = 𝜓𝑥+𝑖 − 𝜓𝑥 , (∇𝑏

𝑖 𝜓)𝑥 = 𝜓𝑥 − 𝜓𝑥−𝑖 .

Here, we assign the domain-wall mass by a step function

𝜖𝐴(𝑥) =
{

−1 (𝑥 ∈ 𝐴)
1 (𝑥 ∉ 𝐴) , (14)

where the region 𝐴 inside the circle is defined by

𝐴 =

{
(𝑥, 𝑦) ∈ (Z/𝑛Z)2

����� (
𝑥 − 𝑛 − 1

2

)2
+

(
𝑦 − 𝑛 − 1

2

)2
< (𝑟0)2

}
, (15)

where 𝑟0 is the radius of 𝑆1 domain-wall in the lattice units.
We solve the eigenvalue problem of 𝐻 numerically, and plot the eigenvalues normalized by

the radius 𝑟0 in Fig. 1. Here we take 𝑀𝑎 = 0.7 and 𝑟0 = 𝐿/4. Data at different lattice spacings
𝑛 = 𝐿/𝑎 = 10, 20, 40 are plotted with circles, triangles and squares, respectively. Here we label the
eigenvalues with half integer 𝑗 , expecting them to represent the eigenstates of 𝐽 in the continuum
limit,

· · · ≤ 𝐸− 3
2
≤ 𝐸− 1

2
≤ 0 ≤ 𝐸 1

2
≤ 𝐸 3

2
≤ · · · . (16)

3More precisely, this term is a spin𝑐 connection rather than a spin connection.
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In fact, the lattice data look converging to the continuum limit denoted by cross symbols in
Fig. 1. The relative deviation of 𝐸 1

2
from the continuum limit as a function of the lattice spacing is

plotted in Fig. 2. Although it is not monotonic due to the violation of the rotational symmetry, the
deviation decreases as 𝑛 grows.

In Fig. 3, we present the distribution of the eigenfunction amplitude. As is expected, the
wave function is localized at the domain-wall. Moreover, we confirm that the state is chiral : the
expectation value of 𝛾normal = 0.99. We conclude that the massless fermion on 𝑆1, feeling gravity
through the induced spin connection, can be formulated on a two-dimensional square lattice by the
curved domain-wall fermion.

Figure 1: The Dirac eigenvalue spectrum nor-
malized by the circle radius at 𝑀𝑎 = 0.7,
𝑟0 = 𝐿/4.

Figure 2: The relative deviation of the lowest

eigenvalue
����𝐸con

1
2

− 𝐸 lat
1
2

����/𝐸con
1
2

at 𝑟0 = 𝐿
4 is plotted

as a function of the lattice spacing 1/𝑛.

Figure 3: The amplitude of the eigenfunction with 𝐸 1
2
.
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3. 𝑆2 domain-wall

In this section, we embed 𝑆2 with a radius 𝑟0 as a domain wall into 3-dimensional Euclidean
space R3.

3.1 Continuum analysis

As in the previous section, we consider a Hermitian Dirac operator

𝐻 = 𝛾0
(
𝛾 𝑗 𝜕

𝜕𝑥 𝑗
+ 𝑀𝜖

)
=

(
𝑀𝜖 𝜎 𝑗𝜕 𝑗

−𝜎 𝑗𝜕 𝑗 −𝑀𝜖

)
, (𝛾0 = 𝜎3 ⊗ 1, 𝛾 𝑗 = 𝜎1 ⊗ 𝜎𝑗) (17)

where an 𝑆2 domain-wall with radius 𝑟0 is put by the sign function 𝜖 = sign(𝑟 − 𝑟0). Note that this
operator acts on 4-component spinors. This operator commutes with the total angular momentum
and parity operators given by

𝐽𝑖 = 1 ⊗ 𝐽𝑖 = 1 ⊗ (𝐿𝑖 +
1
2
𝜎𝑖), (18)

𝑃𝜓(𝑥) = (𝜎3 ⊗ 1)𝜓(−𝑥), (19)

where 𝐽𝑖 acts on 2-component spinors. The eigenstates of the Dirac operator are the simultaneous
eigenstates of 𝐻, 𝐽2 = (𝐽1)2 + (𝐽2)2 + (𝐽3)2, 𝐽3 and 𝑃. Let energy 𝐸 be an eigenvalue of 𝐻 and
we represent that 𝑗 ( 𝑗 + 1) ( 𝑗 = 1

2 ,
3
2 , · · · ) are eigenvalues of 𝐽2 and 𝑗3 = − 𝑗 ,− 𝑗 + 1, · · · , 𝑗 are

eigenvalues of 𝐽3 for the states with 𝐽2 = 𝑗 ( 𝑗 + 1). Note that the energy 𝐸 of edge states must
satisfy 𝐸2 < 𝑀2.

We solve the eigenvalue problem of 𝐻 in a similar way to the previous section. At first, we
introduce a 2-component spinor 𝜒 (±)

𝑗 , 𝑗3
that satisfies the following equations:

𝐽2𝜒 (±)
𝑗 , 𝑗3

= 𝑗 ( 𝑗 + 1)𝜒 (±)
𝑗 , 𝑗3

(20)

𝐽3𝜒
(±)
𝑗 , 𝑗3

= 𝑗3𝜒
(±)
𝑗 , 𝑗3

(21)

𝜒 (±)
𝑗 , 𝑗3

(−𝑥) = (−1) 𝑗∓ 1
2 𝜒 (±)

𝑗 , 𝑗3
(𝑥) (22)

𝜒 (−)
𝑗 , 𝑗3

=
𝜎 · 𝑥
𝑟

𝜒 (+)
𝑗 , 𝑗3
. (23)

With these states, we find eigenstates with energy 𝐸 > 0, total angular momentum 𝑗 , and 𝑗3 as

𝜓𝐸>0
𝑗 , 𝑗3,+ =


1√
𝑟

( √
𝑀2 − 𝐸2𝐼 𝑗 (

√
𝑀2 − 𝐸2𝑟)𝜒 (+)

𝑗 , 𝑗3

(𝑀 + 𝐸)𝐼 𝑗+1(
√
𝑀2 − 𝐸2𝑟) 𝜎 ·𝑥

𝑟 𝜒 (+)
𝑗 , 𝑗3

)
(𝑟 < 𝑟0)

𝑐√
𝑟

(
(𝑀 + 𝐸)𝐾 𝑗 (

√
𝑀2 − 𝐸2𝑟)𝜒 (+)

𝑗 , 𝑗3√
𝑀2 − 𝐸2𝐾 𝑗+1(

√
𝑀2 − 𝐸2𝑟) 𝜎 ·𝑥

𝑟 𝜒 (+)
𝑗 , 𝑗3

)
(𝑟 > 𝑟0)

(24)

and eigenstates with energy 𝐸 < 0, total angular momentum 𝑗 , and 𝑗3 as

𝜓𝐸<0
𝑗 , 𝑗3,− =


1√
𝑟

(
(𝑀 − 𝐸)𝐼 𝑗+1(

√
𝑀2 − 𝐸2𝑟)𝜒 (−)

𝑗 , 𝑗3√
𝑀2 − 𝐸2𝐼 𝑗 (

√
𝑀2 − 𝐸2𝑟) 𝜎 ·𝑥

𝑟 𝜒 (−)
𝑗 , 𝑗3

)
(𝑟 < 𝑟0)

𝑐′√
𝑟

(√
𝑀2 − 𝐸2𝐾 𝑗+1(

√
𝑀2 − 𝐸2𝑟)𝜒 (−)

𝑗 , 𝑗3

(𝑀 − 𝐸)𝐾 𝑗 (
√
𝑀2 − 𝐸2𝑟) 𝜎 ·𝑥

𝑟 𝜒 (−)
𝑗 , 𝑗3

)
(𝑟 > 𝑟0)

, (25)
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where coefficients 𝑐, 𝑐′ are numerical constants. From the continuous condition at 𝑟 = 𝑟0, |𝐸 | must
satisfy

𝐼 𝑗

𝐼 𝑗+1

𝐾 𝑗+1

𝐾 𝑗
(
√
𝑀2 − |𝐸 |2𝑟0) =

𝑀 + |𝐸 |
𝑀 − |𝐸 | . (26)

Note that the eigenfunctions have 2 𝑗 + 1-fold degeneracy with different 𝑗3. In the large mass limit
or 𝑀 ≫ 𝐸 , the energy eigenvalues converges to

|𝐸 | ≃
𝑗 + 1

2
𝑟0

,

(
𝑗 =

1
2
,
3
2
· · ·

)
. (27)

Since 𝑗 is positive, the spectrum of 𝐻 has a gap from zero, which is again a gravitational footprint
made by the embedding of the curved domain-wall.

The normalized edge modes 𝜓̃𝐸=±|𝐸 |
𝑗 , 𝑗3,± is also simplified as

𝜓̃𝐸=±|𝐸 |
𝑗 , 𝑗3,± ≃

√
𝑀

2
𝑒−𝑀 |𝑟−𝑟0 |

𝑟

(
𝜒 (±)
𝑗 , 𝑗3

𝜎 ·𝑥
𝑟 𝜒 (±)

𝑗 , 𝑗3

)
. (28)

This state is a eigenstate of a gamma matrix facing the normal direction of the 𝑆2 domain-wall,

𝛾normal :=
3∑
𝑖=1

𝑥𝑖

𝑟
𝛾𝑖 (29)

with eigenvalue +1.
In the same way as the previous section, we can define the effective two-component spinor on

𝑆2 by a linear combination 𝜒 =
∑
𝑎 (±)𝑗 , 𝑗3

𝜒 (±)
𝑗 , 𝑗3

and we obtain the effective action

lim
𝑀→∞

∫
R3
𝑑3𝑥(𝜓edge)†𝐻𝜓edge =

∫
𝑆2
𝑑𝑆𝜒†

1
𝑟0
(𝜎 · 𝐿 + 1)𝜒. (30)

With the gauge transformation

𝑠−1 =

(
𝑒𝑖

𝜙
2 cos 𝜃

2 𝑒−𝑖
𝜙
2 sin 𝜃

2
−𝑒𝑖

𝜙
2 sin 𝜃

2 𝑒−𝑖
𝜙
2 cos 𝜃

2

)
, (31)

𝐻𝑆2 := 1
𝑟0
(𝜎 · 𝐿 + 1) is transformed as

𝑠−1𝐻𝑆2 𝑠 = −𝜎3

𝑟0

(
𝜎1

𝜕

𝜕𝜃
+ 𝜎2

(
1

sin 𝜃
𝜕

𝜕𝜙
− cos 𝜃

2 sin 𝜃
𝜎1𝜎2

))
= −𝜎3

𝑟0
/𝐷𝑆2 , (32)

where we find again a nontrivial spin connection − cos 𝜃
2 sin 𝜃𝜎1𝜎2 on 𝑆2. The induction of the nontrivial

connection was also reported in condensed matter physics [12–14].

3.2 Lattice analysis

Let (Z/𝑛Z)3 be a 3-dimensional square lattice space. 0 ≤ 𝑥, 𝑦, 𝑧 ≤ 𝑛−1 denote coordinates for
(Z/𝑛Z)3, where 𝑛 means a length of one edge of the lattice space. We impose periodic boundary
condition in every direction.

7
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Figure 4: The eigenvalues of the edge states on the 𝑆2 domain-wall at 𝑛 = 16, 𝑀 = 0.7. The lattice data are
plotted by circles, while the continuum limits are presented by crosses.

(a) Overall picture. (b) Slice at 𝑧 = 7.

Figure 5: The amplitude of the eigenfunction with 𝐸 = 0.218 · · · at 𝑀 = 0.7 and lattice size = 163.

We consider a Hermitian Wilson-Dirac operator

𝐻 = 𝛾0

( ∑
𝑖=1,2,3

[
𝛾𝑖
∇ 𝑓
𝑖 + ∇𝑏

𝑖

2
− 𝑟

2
∇ 𝑓
𝑖 ∇

𝑏
𝑖

]
+ 𝜖𝑀

)
, (33)

(∇ 𝑓
𝑖 𝜓)𝑥 = 𝜓𝑥+𝑖 − 𝜓𝑥 , (∇𝑏

𝑖 𝜓)𝑥 = 𝜓𝑥 − 𝜓𝑥−𝑖 ,

where the step function 𝜖 = sign(𝑟 − 𝑟0) represents the 𝑆2 domain-wall.

Solving an eigenvalue problem of this operator numerically and arranging the eigenvalues in
descending order, we obtain the spectrum presented by circle symbols in Fig. 4. We find a reasonable
agreement with that in continuum shown by crosses, including the gap from zero. As shown in
Fig. 5, we find that the eigenstates with the energy |𝐸 | < 𝑀 are localized at the 𝑆2 domain-wall,
which is again a good evidence for the success of formulating the fermion system with a nontrivial
curved background.
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4. Conclusion

In this work, we have considered 𝑆1 and 𝑆2 curved backgrounds embedded as domain-walls
into a higher-dimensional Euclidean square lattice. We have found that the chiral localized states
appear at the domain-wall. We have also found numerical evidences that these edge states feel
gravity through the induced spin connection. The reasonable agreement with the continuum limits
is encouraging in that a naive continuum limit of the higher-dimensional square lattice is valid.
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