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We report results of simulations of the 2 + 1d Thirring model with N fermion flavors, defined on
a lattice using domain wall fermions. This approach is devised to respect as far as possible the
underlying U(2N) symmetry of the continuum model, expected to be recovered in the limit wall
separation Ls → ∞. For N = 1 there is a symmetry-breaking phase transition associated with
bilinear condensation at strong fermion self-interaction, which is a plausible location for a quantum
critical point. Fits to a renormalisation group-inspired equation of state yield critical exponents
distinct from those obtained using a version of the model defined using staggered fermions.
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1. Introduction

This presentation concerns the Thirring model in d = 2+ 1 spacetime dimensions. The model
is a covariant quantum field theory of self-interacting fermions described by a Lagrangian density

L = ψ̄i(∂/+m)ψi +
g2

2N
(ψ̄iγµψi)

2. (1)

The index µ = 0, 1, 2 runs over spacetime dimensions and i = 1, . . . N over autonomous fermion
flavors. A reducible spinor representation is chosen so that the γ-matrices are 4 × 4, implying the
existence of two further matrices γ3, γ5 which anticommute with the kinetic operator in (1). The
interaction, with coupling strength g2 of dimension -1, is a contact term between two conserved
currents, with the consequence that like charges repel, opposite charges attract.

Most applications of this and other theories of “Flatland” fermions occur in the condensed
matter physics of various layered systems: nodal fermions in d-wave superconductors; spin liquid
phases in Heisenberg antiferromagnets; surface states of topological insulators; and of course
graphene, where low-energy electronic excitations exhibit linear dispersion around two inequivalent
Dirac points within the first Brillouin Zone. The Thirring interaction shares the same symmetries
as the electrostatic interaction between electrons and holes, which is unscreened at half-filling. For
sufficiently large g2, and/or sufficiently small N , it is speculated that the Fock vacuum is unstable
with respect to formation of a particle-hole bilinear condensate

〈ψ̄ψ〉 =
1
V
∂ lnZ
∂m

, 0, (2)

with clear congruences to chiral symmetry breaking in QCD, resulting in a dynamically-generated
mass gap at Dirac point. By hypothesis, the resulting semimetal-insulator transition occuring at
g2
c(N) defines a Quantum Critical Point, whose universal properties characterise the low energy

excitation spectrum [1]. If a correlation length diverges here, a new strongly-interacting quantum
field theory may be defined.

2. Symmetries

On general grounds we expect the QCP to be characterised by dimensionality, the nature of the
degrees of freedom, and the pattern of symmetry breaking. For m = 0 the Lagrangian (1) has the
following invariances:

ψ 7→ eiαψ, ψ̄ 7→ ψ̄e−iα; ψ 7→ eαγ3γ5ψ, ψ̄ 7→ ψ̄e−αγ3γ5 ; (3)

ψ 7→ eiαγ3ψ, ψ̄ 7→ ψ̄eiαγ3 ; ψ 7→ eiαγ5ψ, ψ̄ 7→ ψ̄eiαγ5 . (4)

Together these rotations generate U(2). However, only (3) remains an invariance once m, 〈ψ̄ψ〉 , 0.
Bilinear condensation therefore results in a symmetry breaking U(2N) →U(N)⊗U(N). Note the
mass term mψ̄ψ is hermitian and invariant under a parity inversion xµ 7→ −xµ. In fact, there are two
other parity-invariant mass terms related by U(2N) which are antihermitian in Euclidean metric:

im3ψ̄γ3ψ; im5ψ̄γ5ψ. (5)
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The “Haldane” mass term m35ψ̄γ3γ5ψ is not parity-invariant, and hence physically inequivalent.
Why is it so important to capture the global symmetries faithfully? The following argument is

very far from rigorous, but illustrates the point. In the limit of large N , the Thirring model (1) is
amenable to a diagrammatic analysis. The interaction at strong coupling between conserved fermion
currents is mediated by a propagating vector boson, (actually a fermion – antifermion bound state)
with mass MV given by [2]

MV

m
=

√
6π

mg2 , (6)

whose masslessness in the limit g2 → ∞ suggests equivalence to QED3, an asymptotically-free
theory long believed to support a conformal IR fixed point. Since the dimensionless interaction
strength at this fixed point scales∝ N−1, there should be a critical Nc belowwhich, again, the ground
state is unstable with respect to bilinear ψ̄ψ condensation. Since the UV limit of the Thirring model
and the IR limit of QED3 have the same vector propagator, it is conceivable the fixed points in these
limits coincide, so that the two model share the same Nc. For an asymptotically-free theory like
QED3 there is an argument to constrain Nc based on counting degrees of freedom in both symmetric
and broken phases [3]:

#Goldstone bosons in IR = 2N2 ≤
3
4
× # fermion degrees of freedom in UV = 3N, (7)

where the factor 3
4 reproduces the Fermi-Dirac distribution correctly in 3 dimensions. Saturating

the inequality yields Nc ≤
3
2 1. Now, many early attempts to identify Nc with lattice field theory

used the staggered fermion formulation. Away from weak couplng staggered fermions support a
different symmetry-breaking U(N)⊗U(N) →U(N), yielding a modified counting:

N2 ≤
3
4
× 2d × N ⇒ Nstagg

c ≤ 6, (8)

In fact, numerical simulations with staggered fermions find Nstagg
c = 3.4(1) [5].

3. Domain Wall Fermions

The arguments of the previous section highlight the importance of choosing a lattice regular-
isation which respects the global symmetries of the target theory as much as possible. We have
chosen domain wall fermions (DWF) formulated in 2+1+1d, which recover U(2N) symmetry in the
limit that the separation Ls of two domain walls along a fictitious third dimension x3 grows large –
though it is not clear a priori how “large” that means. Fermion fields in the 2+1d target space are
supposedly localised on the walls and are identified in terms of 2+1+1d fields Ψ, Ψ̄ via

ψ(x) = P−Ψ(x, 1) + P+Ψ(x, Ls); ψ̄(x) = Ψ̄(x, Ls)P− + Ψ̄(x, 1)P+. (9)

with projectors P± = 1
2 (1 ± γ3).

The basic setup was introduced in the context of quenched QED3 in Ref. [6], where it was
noted that U(2N) restoration occurs most rapidly for condensates corresponding to the mass terms

1A treatment of QED3 based on an F-theorem which does not assume free-field dynamics predicts Nc < 4.4 [4]
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Figure 1: Bilinear condensate i〈ψ̄γ3ψ〉 vs. ag−2 on 123 × 16 (163 × 16 for N = 0) with ma = 0.01.

(5). Henceforth we quote results for 〈iψ̄γ3ψ〉, which is formed from 2+1+1d propagators connected
to opposite walls. Further details of both the lattice formulation of the Thirring model used in this
study (the so-called bulk variant) and the simulation algorithm can be found in [7].

4. Results

Fig. 1 presents results for the bilinear condensate as a function of dimensionless inverse coupling
ag−2 for exploratory runs with Ls = 16 [7], which enable a comparison between quenched N = 0,
N = 1 obtained using an RHMC algorithm, and N = 2 using a much cheaper HMC algorithm. As
might be expected there is a clear hierarchy of condensation scales as the coupling gets stronger,
confirming our suspicion that this system is very sensitive to N . However, the U(2N)-symmetric
limit first requires Ls → ∞. For N = 1 we have performed systematic studies of system sizes
123, 163×Ls with Ls = 8, 16, . . . , 48 [8] and are currently accumulating data on 163 with Ls = 64, 80.
Empirically the extrapolation is well-described by

〈ψ̄ψ〉∞ − 〈ψ̄ψ〉Ls = A(g2,m)e−∆(g
2,m)Ls, (10)

as shown across a range of couplings in Fig. 2 using our latest data. The extrapolation (10) is
particularly important at larger couplings, where fortunately it is also easier to fit (difficulties fitting
(10) at weaker couplings are reflected in the large error bars in Fig. 4 below). The decay constant
∆ is shown in Fig. 3. For weak couplings ∆ is approximately m-independent but once ag−2 ≤ 0.36
the behaviour alters to ∆ ∝ m. Fig. 3 graphically illustrates the challenge of finding the U(2) limit
in the strong coupling and massless limits; we are truly stress-testing DWF. Further aspects of the
approach to U(2) symmetry as Ls →∞ are discussed in [8].

In order to identify a possible QCP, we need to identify a critical coupling g−2
c such that in

the limit m → 0 U(2) symmetry spontaneously breaks for g−2 < g−2
c . Since direct estimates

of the 〈ψ̄ψ〉 order parameter are not available for m = 0, our strategy is to accumulate data for
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Figure 2: Bilinear condensate i〈ψ̄γ3ψ〉 on 163 × Ls with ma = 0.05. β ≡ ag−2.

Figure 3: The decay constant ∆(g2,m).

ma = 0.005, 0.01, 0.02, . . . , 0.05 and fit the whole set to a renormalisation group-inspired equation
of state [9]

m = A(g−2 − g−2
c )〈ψ̄ψ〉

δ−1/β + B〈ψ̄ψ〉δ . (11)

The latest simulations are aimed at straddling the critical coupling identified in [8] with wall
separations up to and including Ls = 80. Our fit to the order parameter data extrapolated to
Ls →∞ is shown in Fig. 4, along with the fitted curve in the m→ 0 limit. The critical parameters
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Figure 4: Equation of state fit for N = 1 on 163 in the Ls →∞ limit.

are

βc ≡ ag−2
c = 0.283(1); (12)
δ = 4.17(5); β = 0.320(5), (13)

compatible with the fit based on data taken exclusively in the symmetric phase reported in [8].
Using hyperscaling the critical exponents (13) can be related to those more usually extracted from
orthodox finite-volume scaling studies:

ν = 0.55(1); η = 0.16(1). (14)

5. Discussion

The success of the fit to (11) is strong evidence for spontaneous U(2) symmetry breaking and
the existence of a QCP for the N = 1 Thirring model. Absence of symmetry breaking for N = 2 [7]
as illustrated in Fig. 1 leads to the conclusion

1 < Nc < 2. (15)

By way of contrast, investigations of the Thirring model using N = 1 staggered fermion flavors [9]
reveal distinct critical exponents (see also [10]):

δ = 2.75(9); β = 0.57(2); ν = 0.71(3); η = 0.60(4), (16)

and as already observed in Sec. 2, the critical 3 < Nstagg
c < 4 for staggered fermions is considerably

larger. It seems plausible that the phase transitions probed by numerical simulations of DWF and
staggered fermions lie in different universality classes, and define distinct QCPs. This is perfectly
consistent with the remarks made in Sec. 2. It is possible to formulate a Thirring model with
U(N)⊗U(N) symmetry using Kähler-Dirac fermions in which spinor and taste degrees of freedom
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are entangled, which may correspond to the continuum limit of the staggered model [11] – there is
no reason to expect “taste symmetry restoration” away from weak coupling.

Before concluding, we should note that other non-perturbative lattice studies with explicit
U(2N) symmetry have been performed using fermions with a kinetic term employing the SLAC
derivative [12]. The results differ significantly, in particular NSLAC

c ≈ 0.8 implying there is no QCP
corresponding to a local unitary quantum field theory. Clearly the question of defining suitable
regularisations of QFTs away from weak coupling is delicate: different schemes may fall in the
basin of attraction of different fixed points.

In future work we plan to switch attention to two-point correlation functions, focussing on
both Goldstone and non-Goldstone bound states, as well as the fermion propagator iteslf, which in
principle enables the extraction of a further exponent ηψ.
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