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We consider the HAL QCD method in the system with non-zero total momentum (laboratory
frame). We derive a relation between the NBS wave function in the laboratory frame and the
energy-independent non-local potential (HAL QCD potential), and propose the time-dependent
method to extract the potential from correlation functions in the laboratory frame. We then apply
this formulation to the I = 2 ππ system to calculate the corresponding potential in the laboratory
frame, employing the 2+1 flavor gauge configuration on a 323 × 64 lattice at the lattice spacing
a ' 0.091 fm and mπ ' 700 MeV. While statistical errors are larger, the effective leading order
(LO) potentials and corresponding phase shift agree with those from the HAL QCD potential
in the center of mass (CM) frame. We also demonstrate the consistency in scattering phase
shifts between the HAL QCD method in several frames and the finite volume method. The HAL
QCD method in the laboratory frame enlarges applicabilities of the method to investigate hadron
interaction including mesonic resonances such as ρ and σ.
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1. Introduction

Hadron interactions have been investigated actively in lattice QCD mainly by two methods,
the finite volume method[1–3] and the HAL QCD method[4–7], both of which are based on the
fact that the Nambu-Bethe-Salpeter (NBS) wave functions contains information of the scattering
S-matrix in QCD.

The HAL QCD method works well, in particular for two baryon interactions (see [8] and
references therein), thanks to the time-dependent method[7] and multi-channel extension[9]. Re-
cently, resonances such as the ρmeson have been investigated in the HAL QCD method, by various
improvements for all-to-all propagators[10–14]. If we extend the HAL QCD method to systems
having the same quantum numbers of the QCD vacuum such as the σ meson, a serious obstruc-
tion appears. For example, the vacuum contribution dominates over signals for ππ states in the
correlation function between σ resonance and the I = 0 S-wave ππ in the center of mass frame as

〈0|π(t)π(t)σ(0) |0〉 ' 〈0|π(t)π(t) |0〉〈0|σ(0) |0〉 + e−2mπ t〈0|π(t)π(t) |ππ〉〈ππ |σ(0) |0〉 + · · · . (1)

An introduction of non-zero total momenta to the system is a promising way to remove this type of
contaminations from the vacuum, and the theoretical formulation for the HAL QCD method in the
laboratory system has already been proposed[15]. Recently, we have performed a numerical test of
the formulation to extract the potential from the I = 2 ππ system in the laboratory frame, which is
reported here. After briefly explaining the general formulation, we present numerical results. The
I = 2 ππ scattering phase shift obtained in the laboratory frame are compared with those from the
potential in the CM frame as well as the finite volume spectra.

2. Formulation for the HAL QCD potential in the laboratory frame

2.1 Lorentz transformation for the NBS wave function

The NBS wave function for a scalar theory in the Minkowski spacetime is defined in a general
frame as

ψk1,k2 (x1, x2) = 〈0|T {φ(x1)φ(x2)} |k1, k2〉 := ϕk1,k2 (x)e−iWX0+iP·X, (2)

where φ(x) is a scalar field operator, |k1, k2〉 is an asymptotic in-state of two particles with four
momenta k1 and k2, W :=

√
k2

1 + m2 +
√

k2
2 + m2 and P := k1 + k2 are the total energy and

momentum, respectively, while X := (x1 + x2)/2 and x := x1 − x2 are center of gravity and relative
coordinates, respectively, and ϕk1,k2 (x) is a relative NBS wave function.

The relative NBS wave function in the laboratory frame is related to the one in the CM frame
as ϕk1,k2 (x) = ϕk∗1,k∗2 (x∗), where quantities with ∗ represent those in the CM frame, and are related
to those without it in the laboratory frame as x∗0 = γ(x0 − v · x‖ ), x∗

‖
= γ(x‖ − vx0), x∗⊥ = x⊥. Here

‖ and ⊥ means vectors parallel and perpendicular to v := P/W , respectively. The boost factor γ is
given by γ := 1√

1−v2 , W ∗2 = W2 − P2, and P∗ = 0 by definition.

2.2 Potential from the NBS wave function in the laboratory frame

The HAL QCD potential is defined in the CM frame, and is extracted from the correlation
functions in the Euclidean spacetime by the Wick rotation as x4 = ix0, which leads to x∗4 =
γ(x4 − iv · x‖ ), x∗

‖
= γ(x‖ + ivx4), x∗⊥ = x⊥.
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The NBS wave function is related to the non-local potential in the derivative expansion as

1
2µ

(∇∗2 + k∗2)ϕk∗1,k∗2 (x∗, x∗4) =
∞∑
j=0

V j

x∗4
(x∗)

(
∇∗2

) j
ϕk∗1,k

∗
2
(x∗, x∗4), (3)

where µ = m/2 is the reduced mass and the subscript x∗4 of V j represents the scheme to define the
potential with the relative Euclidean time separation x∗4. (Usually, the potential is defined at the
equal time, x∗4 = 0.)

Using ϕk∗1,k∗2 (x∗, x∗4) = ϕk1,k2 (x, x4) and (3), we obtain[15]

1
2µ

(
∇∗2 + k∗2

)
ϕk1,k2 (x, x4) =

∞∑
j=0

V j

γ(x4−iv·x‖ )

(
x⊥, γ(x‖ + ivx4)

) (
∇∗2

) n
ϕk1,k2 (x, x4), (4)

where ∇∗2 = ∇2
⊥ + γ

2(∇‖ + iv∂x4 )2 and k∗2 = W/4 − m2.
Since x∗ ‖ becomes complex for non-zero x4, a meaningful potential is obtained from (4) only

at x4 = 0. In addition, we take x‖ = 0 to extract the equal time scheme potential. For example, the
effective LO potential in the equal time scheme becomes[15]

VLO
x∗4=0(x∗⊥ = x⊥, x∗‖ = 0) =

{
∇2
⊥ + γ

2(∇‖ + iv∂x4 )2 + k∗2
}
ϕk1,k2 (x, x4)

2µϕk1,k2 (x, x4)

�������x4=0,x‖=0

, (5)

where we set x4 = 0 and x‖ = 0 after taking derivatives in the right-hand side.

2.3 Time-dependent method in the laboratory frame

For the extraction of the potential, we employ the time-dependent HAL QCD method[7], which
is given in the CM frame as

VLO
x∗4

(x∗)R(x∗, x∗4, X∗4) =
(
∇∗2

2µ
− ∂X∗4 +

1
4m

∂2
X∗4

)
R(x∗, x∗4, X∗4), (6)

where R is the 4-pt function divided by the 2-pt function squared, expressed by

R(x∗, x∗4, X∗4) =
∑
n

AnϕW ∗
n

(x∗, x∗4)e−(W ∗
n−2m)X∗4 + · · · , W ∗n := 2

√
k∗2n + m2, (7)

An is an overlapping of the n-th eigenstate to the source operator, and ellipses represent inelastic
contributions.

The time-dependent formula in the laboratory frame is more involved, and is given by[15]

VLO
x∗4=0(x∗⊥ = x⊥, x∗‖ = 0) =

(L⊥ + L ‖ + mE)(x, x4, X4)
mG(x, x4, X4)

�����x4=0,x‖=0
, (8)

where

G(x, x4, X4) =
[
(∂X4 − 2m)2 − P2

]
R(x, x4, X4), (9)

E(x, x4, X4) =


∂2
X4

4m
− ∂X4 −

P2

4m


G(x, x4, X4), L⊥(x, x4, X4) = ∇2

⊥G(x, x4, X4), (10)

L ‖ (x, x4, X4) =
[
−(∂X4 − 2m)∇‖ + iP∂x4

] 2 R(x, x4, X4). (11)

Note that the right-hand side in (8) are written in terms of quantities in the laboratory frame only,
while the potential in the left-hand side is defined in the CM frame.
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3. Numerical results for the I = 2 ππ system

We apply the formula in the laboratory frame to the I = 2 ππ system for the demonstration.

3.1 Simulation details

We employ the 2+1 flavor ensemble generated by the CP-PACS collaboration[16] on a 323×64
lattice with the Iwasaki gauge action at β = 1.90, the non-perturbatively O(a) improved Wilson
action at cSW = 1.7150 and hopping parameters (κud, κs) = (0.13700, 0.13640), which leads to
a ' 0.091 fm for the lattice spacing and mπ ' 700 MeV for the pion mass. All correlation functions
are evaluated by the one-end trick[17] on 399 configurations × 16 source time locations with the
periodic boundary condition in all directions, and their errors are estimated by the jack-knife method
with bin size 21. A single Z4 noise is used in the one-end trick with dilutions for color, spinor
and even/odd spatial indices. Quark sources are smeared as qs (x, t) = ∑

y f (x − y)q(y, t) with the
Coulomb gauge fixing, where the smearing function is given by f (x) = Ae−B |x | with B = 0.3. We
take A = 1 for |x| = 0, A = 1.2 for |x| < L−1

2 with L = 32, or A = 0 otherwise. We consider two
laboratory frames, the case 1 with P = (0, 0, 2π/L), where pions have momenta P and 0, and the
case 2 with P = (0, 0, 4π/L), where each pion has a momentum P/2. In addition, we also consider
the CM frame (P = (0, 0, 0)) for comparisons.

3.2 I = 2 ππ Potentials and scattering phase shifts
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Figure 1: Decompositions of the effective LO potential in case 1 (Left) and case 2 (Right), where dotted
lines represent expected relative energies in non-interacting cases.

Fig. 1 shows the effective LO potential and its decomposition at t = X4 = 15 for the case 1
(Left) and the case 2 (Right), which is given by

VLO
x∗4=0(x∗⊥ = x⊥, x∗‖ = 0) =

(L⊥ + L ‖ )(x, x4, X4)
mG(x, x4, X4)

�����x4=0,x‖=0
+

E(x, x4, X4)
G(x, x4, X4)

������x4=0,x‖=0

, (12)

where the first term represents the Laplacian contribution (orange triangles), the second one the
kinetic energy contribution (green triangles), and their sum is the effective LO potential (blue
circles). For the case 1 (Left), the large negative shift from zero of the Laplacian contribution at

4
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long distances is compensated by the large positive shift of the kinetic energy contribution, which
is dominated by the ground state in this laboratory frame (dotted line in the figure for the non-
interacting case), so that the total potential approaches to zero at long distances. This cancellation
between the Laplacian and kinetic energy contributions is an evidence for the validity of the time
dependent method complicated in the laboratory frame. For the case 2 (Right), on the other hand,
these shifts at long distances are small, as an expected kinetic energy for the ground state is almost
zero.
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Figure 2: (Left) A comparison of the effective LO potentials among the case 1 (blue circles), the case 2
(orange triangles) and the CM (green squares). An inset shows its enlargement. (Right) Scattering phases
shifts δ0(k) for the I = 2 ππ system as a function of k2/m2

π for the case 1 (blue), case 2 (orange) and the CM
(red), where dark and light color bands show statistical and systematic errors, respectively.

In Fig. 2 (Left), we compare the effective LO potentials among the case 1 (blue circles), the
case 2 (orange triangles) and the CM (green squares), which are almost identical except at short
distances though statistical fluctuations are much larger in laboratory frames. Larger statistical
fluctuations may be caused by larger total momentum P, as similar phenomena have been observed
for single hadron energies with non-zero momenta in lattice QCD. Larger fluctuations may be
explained partly by larger contaminations to the L = 0 contribution from higher partial waves in the
laboratory frame with L = 2, 4, · · · , while contaminations come from L = 4, 6, · · · in the CM frame.
The effective LO potentials show the interaction between I = 2 ππ is repulsive at all distances.

We next calculate scattering phase shift δ0(k) for the I = 2 ππ system, using these three
potentials fitted by a sum of 4 Gaussian functions. While central values of scattering phase shifts
are obtained form potentials at X4 = 15, their systematic uncertainties are estimated by differences
between X4 = 15 ± 1. Fig. 2 (Right) shows scattering phase shifts δ0(k) as a function of k2/m2

π

for the case 1 (blue), case 2 (orange) and the CM frame (red), where statistical and systematic
errors are given by dark and light color bands, respectively. As expected from results for potentials,
we observe that all three cases give consistent results though both statistical and systematic errors
increases for larger total momentum P. Form this agreement, we conclude that hadron interactions
can be investigated by the HAL QCD method using the laboratory frame in practice, even though
systematic as well as statistical errors become larger.
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Figure 3: (Left) Effective energies of the I = 2 ππ system, obtained by eigenvalues of the correlation matrix
in the CM frame for the ground state (red triangles) and the first excited state (blue circles). Fits with a
single exponential and the corresponding fit ranges are shown by color bands. (Right) Effective energies
and their single exponential fits for the ground state of the I = 2 ππ system in the laboratory frames for the
case 1 (blue circles) and the case 2 (red triangles). Dashed and dotted lines are the ground state energies for
non-interacting cases.

3.3 Comparisons with the finite volume method

We here compare our results to those obtained by the Lüscher’s finite volume method. We
calculate finite volume spectra from correlations functions, two (the ground and the first excited
energies) in the CM frame, one each (the ground state) in the case 1 and the case 2. Fig. 3 (Left)
shows effective energies of the I = 2 ππ system for the grand state (red triangles) and the first
excited states (blue circles) obtained by the variational method in the CM frame, while Fig. 3
(Right) presents effective energies for the grand state in the case 1 (blue circles) and in the case 2
(red triangles).
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Figure 4: (Left) A comparison of k cot δ0(k) with results from the Lüscher’s finite volume method in the
casde 1 (cyan), the case 2 (magenta), the CM frame (gray), together with the result from [18] in the CM
frame (green). Dash-dot, dotted, and dashed lines represent constraints by the Lüscher’s formula in the case
1, the case 2, and the CM, respectively. (Right) The enraged one in the low energy region.

Fig.4 summarizes all results in terms of k cot δ0(k)/mπ as a function k2/m2
π , where the HAL

6



P
o
S
(
L
A
T
T
I
C
E
2
0
2
1
)
5
4
6

HAL QCD potentials with non-zero total momentum Sinya Aoki

QCD results are given by red (CM), blue (case 1) and orange (case) bands representing statistical
(dark) and systematic (light) errors, while results from the finite volume spectra are shown by white
(CM), cyan (case 1) and magenta (case 2) bands, together with the CM result from [18] by a green
band. In the figure, constraints by the Lüscher’s finite volume formula are represented by dashed
(CM), dash-dot (case 1) and dotted (case 2) lines. Since finite volume data must lie on these lines,
errors of k sometimes result in large errors of k cot δ0(k), as seen in the case 2 (magenta band).

Although errors are larger for both HAL QCD and finite volume data in laboratory frames, we
confirm that k cot δ0(k) by the HAL QCD potential method are consistent with those by the finite
volume method. These agreements support not only that the HAL QCD method in the laboratory
frame works in practice for this system, but also that the HAL QCD method and the finite volume
method agree with each other.

4. Summary

In this talk, we apply the HAL QCD method with non-zero total momentum to the I = 2
ππ system. We show that the method works in practice and gives reasonable results. This is
encouraging since the method opens new possibilities to extract potential of the system with the
same quantum number to the vacuum state such as the I = 0 S-wave ππ system, which contains the
σ resonance.
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