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1. Introduction

Experimental precision for measurements of � and �B decays will continue to improve over the
coming years, as Belle II continues collecting data and the LHCb experiment returns to operation
after its upgrade period. While +D1 has so far been shown to have some discrepancy between
determination using inclusive and exclusive semileptonic � decays [1], increased experimental
precision on rare � → ga decays will soon allow competitive and independent measurements of
+D1 using the decay constant 5� as an input.

Lattice QCD calculations of 5� using a variety of different quark actions and methods of sym-
metry breaking can improve the robustness of the world lattice average. Many recent contributions
to the FLAG world averages [2] of 5� and 5�B feature HISQ [3, 4] or Domain Wall Fermions [5],
this last paper providing a new calculation to the world average of 5�/ 5�B relative to 5�B with
# 5 = 2 + 1, which is of particular interest in these proceedings. The decay constants 5�B and 5�∗B
have also been calculated relative to 5�B in a recent work using Wilson fermions [6]. All of these
calculations use a fixed strange quark mass, while in this work we consider O(0)-improved Wilson
fermions with a controlled (* (3) 5 breaking for the light and strange quark masses that keeps the
average mass of these lighter quarks constant and fixed to the physical average mass.

2. Simulation details

2.1 SU(3) breaking and quark actions

The gauge field configurations used in this study are generated with 2+1 flavours of non-
perturbatively O(0) improved clover-Wilson fermions, at a variety of lattice spacings. Rather than
keeping the strange quark mass <B constant at its physical value, we follow the QCDSF process
for choosing the masses of light and strange quarks [7], where the value of < = 1

3 (2<; + <B) is
kept constant, allowing for greater control over the way in which (* (3)-flavour is broken. In this
formalism, we expect all flavour-singlet quantities to remain approximately constant with (* (3) 5
—- with breaking effects at O((X<)2) only. This has already been demonstrated with light mesons
[8].

In the specific case of �-mesons, we also expect (* (3) flavour-singlet combinations of �
meson properties to be approximately constant along this quark mass trajectory. We can thus use
properties of the physical � flavour singlet as an appropriate target in tuning our �-mesons on the
lattice. We label this � flavour-singlet meson -�, and consider its mass -2

�
= 1

3 (2"�; + "�B ), or
its decay constant ( 5-� ) with an appropriate substitution. The flavour-singlet combination of light
pseudoscalar masses is similarly labelled -2

c =
1
3 (2<

2
 
+ <2

c).
We describe bottom quarks using a variant of the ‘Fermilab action’ or ‘RHQ action’ [9, 10].

This anisotropic clover-improved action has the form [11]

(;0C = 0
4
∑
G,G′

k(G ′)
(
<0 + W0�0 + Z ®W · ®� −

0

2
(�0)2 − 0

2
Z ( ®�)2 +

∑̀
,a

80

4
2%f`a�`a

)
G,G′

k(G),

(1)
where <0, 2%, and Z are tuned as three free parameters. The ‘best’ � meson is selected by tuning
the free parameters until the masses and hyperfine splitting of our calculated -� and -�∗ mesons
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Table 1: Table of lattice ensembles used in this work. * indicates ensembles with a different value of <,
further from the physical <. † indicates ensembles where multiple sources per configuration are used to
produce additional samples. Marked ensembles use 2 randomised sources, except for the 643 × 96 sample
with 4 randomised sources used. ‡ denotes the ensemble used for the weighted averaging study explored in
Section 5.1

V 0 (fm) Lattice volume # Samples (^light, ^strange) <c (MeV) < (MeV)

5.4 0.082 323 × 64 1015 ( 0.11993 , 0.11993) 408 408 ‡
1004 ( 0.119989 , 0.119812 ) 366 424
877 ( 0.120048 , 0.119695 ) 320 440
1006 ( 0.120084 , 0.119623 ) 290 450

5.5 0.074 323 × 64 677† ( 0.12095 , 0.12095 ) 403 403
786 ( 0.12104 , 0.12077 ) 331 435
1021 ( 0.121099 , 0.120653) 270 454

323 × 64 778 ( 0.1209 , 0.1209 ) 468 468 *
758 ( 0.12104 ,0.12062 ) 357 505 *
902† ( 0.121095 , 0.120512 ) 315 526 *
1002 ( 0.121145 , 0.120413 ) 258 537 *

483 × 96 1251† ( 0.121166 , 0.120371) 226 539 *
5.65 0.068 483 × 96 500 ( 0.122005 , 0.122005 ) 412 412

500 ( 0.122078 ,0.121859 ) 355 441
845† ( 0.12213 ,0.121756) 302 457
576 ( 0.122167 , 0.121682) 265 474

643 × 96 320† ( 0.122227 , 0.121563 ) 155 480
5.8 0.059 483 × 96 298 ( 0.12281 , 0.12281 ) 427 427

415 ( 0.12288 ,0.12267 ) 357 456
525 ( 0.12294 , 0.122551 ) 280 477

match the properties of the physical -� and -�∗ . The tuning method follows that in [11], where
the � and �∗ mesons are spin-averaged.

In practice, uncertainties on measured masses and splittings also result in uncertainty in the
values of <0, 2%, and Z corresponding to the ‘best’ tuned � meson. We choose to generate multiple
1-quarks per lattice ensemble in a ‘tuning star’ shape and interpolate to the ‘best’ �, rather than
generating only one ‘best’ 1-quark per ensemble. This also allows for re-interpretation of our
results with newer fitting strategies, and allows us to investigate the effect of these fit strategies on
the tuned 1 and on the final results for 5�. Where possible, we endeavour to use the same set of
seven 1-quarks in the tuning star for each ensemble with the same lattice spacing and volume along
the line of constant <.

2.2 Lattice ensembles

A variety of lattice spacings and lattice volumes are used in this work. Some details of the
QCDSF gauge field ensembles are presented in Table 1.
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Table 2: The calculated ‘best’ tuning parameters and error margins for each of the ensembles used. * denotes
ensembles with a different value of <, further from the physical <, represented in dark blue in all Figures. †

denotes the near-physical 643 × 96 ensemble which has extrapolated parameters.

V ^; <0 2% Z

5.4 0.11993 3.56 ± 0.14 3.73 ± 0.36 1.59 ± 0.12
0.119989 3.62 ± 0.13 3.88 ± 0.35 1.60 ± 0.12
0.120048 3.58 ± 0.15 3.73 ± 0.40 1.57 ± 0.14
0.120084 3.76 ± 0.16 4.27 ± 0.41 1.53 ± 0.14

5.5 0.12095 2.92 ± 0.13 3.86 ± 0.34 1.23 ± 0.12
0.12104 2.82 ± 0.13 3.59 ± 0.34 1.38 ± 0.10
0.121099 2.83 ± 0.12 3.61 ± 0.31 1.26 ± 0.11

5.5* 0.1209 2.80 ± 0.13 3.60 ± 0.34 1.30 ± 0.11
0.12104 2.65 ± 0.11 3.19 ± 0.29 1.37 ± 0.11
0.121095 2.86 ± 0.11 3.70 ± 0.29 1.21 ± 0.09
0.121145 2.92 ± 0.14 3.86 ± 0.35 1.11 ± 0.14
0.121166 2.75 ± 0.10 3.42 ± 0.25 1.34 ± 0.08

5.65 0.122005 2.67 ± 0.14 4.18 ± 0.38 1.07 ± 0.10
0.122078 2.48 ± 0.15 3.72 ± 0.39 1.12 ± 0.11
0.12213 2.52 ± 0.09 3.78 ± 0.24 1.16 ± 0.08
0.122167† 2.49 ± 0.13 3.67 ± 0.34 1.25 ± 0.10

5.8 0.122227 3.18 ± 0.20 5.42 ± 0.52 0.96 ± 0.13
0.12281 3.03 ± 0.09 5.30 ± 0.24 1.21 ± 0.07
0.12288 3.28 ± 0.09 6.06 ± 0.27 1.14 ± 0.06
0.12294 3.00 ± 0.08 5.25 ± 0.22 1.30 ± 0.06

The tuning parameters corresponding to the best interpolated 1 quark are presented in Table
2. These are calculated using our original fitting strategy, which uses the same fit window for the
same correlator across each of the 7 1-quarks in the ensemble. Choosing this window is assisted
by comparing the correlated j2/d.o.f for the fit on each � meson correlator. Limitations of this
method are discussed further in Section 4.2, and the newer weighted fitting approach is discussed
in detail in Section 5.

3. Decay constants

The decay constant 5� is calculated from its lattice counterpart Φ� via the equation

5�@ =
1
0
/Φ

[
Φ0
�@
+ 2�Φ1

�@

]
(2)

where Φ0
�@

is calculated from two-point correlators for axial and pseudoscalar operators:

Φ0
�@
= −
√

2"�C�%
C%%

, C�% =
〈Ω|�4 |�〉 〈�|% |Ω〉

2"�

, C%% =
〈Ω|% |�〉 〈�|% |Ω〉

2"�

,
(3)
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and /Φ is calculated:

/Φ = d
1@

�

√
/11
+
/
@@

+
, (4)

where @ represents the ; or B quark in the calculation of 5� or 5�B respectively. The perturbative
constant d1@

�
is set to 1 in this work, and similarly the higher-order correction coefficient 2� in 5�

is set to 0. For determining /11/@@
+

, we compute meson three point functions of the vector current
and enforce charge conservation. In practice, /11

+
is calculated using a �B meson.

We calculate the decay constant for each 1 quark in the tuning star on each ensemble, for each
of 200 bootstraps. The tuning is used to linearly interpolate to the value of 5� or 5�B corresponding
to the best 1 quark. These best values are shown in Figure 1, where the error bars shown are
mostly from the propagation of the uncertainties in the tuning, as most of the uncertainty from the
calculation of 5�@ cancels when we consider the ratio 5�@/ 5-� . Two different lines of fit are shown,
one linear in ("2

c/-2
c −1) and one quadratic. Both lines of best fit must pass through (1, 1), and are

calculated assuming that the (* (3) 5 breaking does not depend on the lattice spacing. The values
used for comparison are calculated from FLAG world average result for 5�B/ 5� on # 5 = 2 + 1
samples [2].
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Figure 1: Fan plot of 5�/ 5�- and 5�B/ 5�- , against the SU(3) breaking in the light quarks "2
c/(1/3"2

c +
2/3"2

 
).

4. Systematics and extrapolating to the physical point

4.1 The ratio 5�B/ 5�

In most studies, (* (3) symmetry breaking in the decay constants is reported in terms of the
ratio 5�B/ 5�. By extrapolating our calculated 5�B/ 5� result to the physical point, we will be able to
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Figure 2: 5�B / 5� for a variety of lattice ensembles. The linear and quadratic fits shown are for all ensembles,
and are constrained to pass through the fixed point (1,1).

compare our results to the FLAG averages. The ratio 5�B/ 5� for all ensembles is shown in Figure
2.

We observe that our ratio 5�B/ 5� is smaller than the # 5 = 2 + 1 world average. These
calculations, however, are made using an assumption that the normalisation constants / BB

+
and / ;;

+

are approximately equal, which is only true near the (* (3) 5 symmetric point. From extrapolations,
this separation should be 1-2% at the physical point, which would account for some of the difference
with respect to the world average. Calculation of / BB

+
and / ;;

+
on the near-physical lattices is in

progress.
In order to consider extrapolations to the physical and to the continuum limit, we make multiple

fits to the decay constant ratio in order to assess the impact of lattice ensemble effects. We consider
a fit of the form 5�B/ 5� = � ("2

c/-2
c − 1)2 + (�0 + �10

2) ("2
c/-2

c − 1) + 1, which has quadratic
and linear terms in the flavour-breaking ratio "2

c/-2
c . The equation is constrained to pass through

the symmetric point at (1, 1), and we also consider the possibility of an 02 dependence in the
linear part of the expansion (coefficient �1). Multiple fits are performed for different subsets of
ensembles, including different combinations of the coefficients �, �0, and �1. The extrapolated
results for different fit types are displayed in Figure 3, with key values also presented in Table 3.
For fit functions containing the �10

2 coefficient, the extrapolation to "2
c/-2

c = 1 also includes the
continuum extrapolation to 02 = 0.

Many of the predictions for the quadratic coefficient � are consistent with zero. When the
extrapolation to the physical point is performed, we see that the fits including 02 produce a lower
expected value than the other fits. From the linear and quadratic fits at individual 02, we see
somewhat of a downward trend in the extrapolated 5�B/ 5� results as 0 goes to zero. This downward
trend could explain why the fits containing 02 terms have a lower extrapolated value of 5�B/ 5�,

6
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Figure 3: Extrapolated values corresponding to the physical point, for various fits to 5�B/ 5�.

Table 3: Extrapolated values of the 5�B/ 5� ratio for different fit types. The fits for <c! > 4 include all
ensembles except the near-physical pion mass V = 5.65 ensemble.

Data Fit type Value at physical stat. error j2/dof fit

All ensembles Linear 1.134 0.003 1.8
Quadratic 1.145 0.006 1.8

Quadratic with 02 1.105 0.015 1.3

<c! > 4 Linear 1.136 0.003 1.8
Quadratic 1.159 0.008 1.3

Quadratic with 02 1.120 0.015 0.9

FLAG value 1.201 0.016

but the evidence of a downward trend is not particularly strong in these ensembles and a constant
relationship between 5�B/ 5� and 02 is also supported by the results.

4.2 Results and systematic uncertainties

At this stage of the study, we choose the central value of our predictions from the <c! > 4
ensembles, assuming no dependence on 02. In future work with additional ensembles closer to the
physical point at multiple lattice spacings, there may be more support for a dependence on 02 and
this assumption may be removed.

A summary of the estimated uncertainties for 5�B/ 5� is shown in Table 4. A graphical summary
of the extrapolated 5�B/ 5� value for different scenarios is shown in Figure 4.

7
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Table 4: Summary of known sources of systematic error in calculation of 5�B/ 5� using the continuum
extrapolation and quadratic extrapolation to the physical point. For a conservative estimate, errors are
assumed to be uncorrelated with one another such that the total systematic is calculated in quadrature.

Source - + Note

/11
+

value 0 0 Cancelled in ratio
/ BB
+
// ;;
+

0 0.023 2% systematic expected
Changes to 1 tuning 0.007 0.007 Difference between ‘no 1 interpola-

tion’ and ‘nominal’
Fitting to ensembles with light pion
masses

0.015 0.015 Difference between all ensembles and
<c! > 4 for ‘nominal’ fits

Correlator fits used in the decay con-
stant

0.07 0.07 Difference between ‘ 5� fit window’
and ‘nominal’

TOTAL SYSTEMATIC -0.071 +0.076

nom
inalt

no b interpolation

tuning fit w
indow

fB  fit w
indow
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ed
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no b interpolation

tuning fit w
indow

fB  fit w
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Figure 4: Extrapolated values corresponding to the physical point, for various fits to 5�B/ 5�. All ensembles
used in fit (blue), only ensembles with <c! > 4 used in fit (orange)

The systematic uncertainty of the 1 quark tuning method is estimated using a small study,
where the fit windows used to calculate the hyperfine splitting of � and �∗ are changed. This
change is then propagated through to the final decay constants. We find that while the individual
decay constants 5� and 5�B are affected by these changes, the ratio 5�B/ 5� is minimally affected.

In contrast, the fit window used for C�% has a strong effect on the results for the ratio, especially
for ensembles closer to the physical point. This can also result in a failure of our assumption that
the flavour singlet decay constant 5-� remains approximately constant as we approach the physical
point. Further investigation reveals that this discrepancy is caused by a breakdown of the earlier
assumption that a similar fit window can be used for all 7 1 quarks in the tuning star and for both the

8
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� and �B cases. A systematic method is needed for choosing appropriate fit windows, that balances
the need for consistency across all of the �@ mesons while also ensuring a high quality fit result for
each individual correlator. In Section 5, we begin to test a weighted fit method proposed in [12, 13]
for this purpose.

We also notice that the near-physical point that is excluded from the <c! < 4 fit has a strong
effect on the final extrapolated value of 5�B/ 5�. This is somewhat unsurprising, as ensembles
closest to the physical point are also furthest from the centre of the (* (3) 5 expansion, and thus
will have the greatest impact on the expected quadratic component of the fit. We can see that the
extrapolated values with and without the near-physical point are much more similar for the case
with the changed fits for C�% in the decay constant calculation.

Another interesting result is that relative to the simple quadratic fit, the physical prediction
using the 02 fit is larger in the case with where the fit windows for 5� and 5�B have been adjusted,
but smaller in all other cases. This change may be in part due to the larger values of 5�B/ 5� closer
to the physical point, which are not equally distributed among all sets of ensembles.

Overall, applying these systematic uncertainties to our result from the <c! > 4 ensembles
with the quadratic fit gives

5�B

5�
= 1.159 ± 0.015 (statistical) +0.076

−0.071 (systematic) (5)

at the time of this Proceedings.

5. Weighted averaging

The calculation of 5� and 5�B requires a substantial number of distinct correlator fits, due to
the tuning required for the 1-quark action employed in this work. As was discussed in Section
4.2, this can lead to difficulties in controlling systematic errors from the choice of correlator fit
windows. It is not practical to individually select the optimal choice of C<8= and C<0G for each of
the O(100) fits required for each ensemble. Moreover, fits chosen by eye can prove difficult when
quantifying systematic error. To simplify the procedure of choosing optimal windows for many
different correlators, we can calculate lattice observables as a weighted averaging over a range of
C<8= and C<0G . We implement a weighting such that better-performing fits have the largest impact
on the final average result. In this way, calculations from poorer fit windows are algorithmically
suppressed without the need for additional input.

5.1 Implementing the weighted average technique

Our � and �B correlators are fit over multiple choices of C<8= and C<0G . For each fit, a weight
is determined using the correlated j2. Lattice quantities, such as extracted energies used in the 5�
and 5�B calculation, can then be calculated as an average, Ḡ, over the result from each of the varied
windows G8 . Each weight, F8 , is calculated and then normalised across all fits as F8∑#5 8CB

9
F9

. The

normalised weighting is combined with each window result to obtain the final result as:

Ḡ =

# 5 8CB∑
8

F8G8∑# 5 8CB

9
F 9

. (6)

9
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Table 5: Number of unique correlator fits required at each stage of the 5� and 5�B calculation, for a given
ensemble.

Correlator calculated Number of fits per ensemble Purpose
CAP 14 (For @ = ;, B and for each of 7 1-quarks in tuning star) Calculate decay constant
/
@@

+
2 (For @ = ;, B) Light quark renormalisation factor of decay constant

/11
+

7 (For each of 7 1-quarks in tuning star) Heavy quark renormalisation factor of decay constant〈
�∗@

��+ ��Ω〉
and

〈
�@

��%��Ω〉
28 (For �;, �∗; , �B, �

∗
B and each of 7 1-quarks in tuning star) Tuning to spin-averaged mass

〈�∗@ |+ |Ω〉
〈�@ |% |Ω〉 14 (For @ = ;, B and for each of 7 1-quarks in tuning star) Tuning to mass splitting〈
�@

��%��Ω〉 42 (For @ = ;, B, with each of 1, 2 or 3 units of momentum
and for each of 7 1-quarks in tuning star)

Tuning to kinematic mass coefficient

TOTAL (per ensemble) 107

There are two choices of weights in the literature: a ?-value based weight [12] and a Bayesian
weight [13]. This study proceeds with the Bayesian weights, as it was observed that the ?-value
based weighting preferred short, unphysical � and �B correlator fit windows, though this remains
under investigation. The Bayesian weighting is calculated as

F8 = exp(−1
2
j2
8 + #�$� ) (7)

where #�$� is the number of degrees of freedom. It can be seen from the form of the Bayesian
weighting, that observables calculated from fits with smaller j2

8
and larger degrees of freedom

should dominate the final weighted average result.

5.2 Simulating � (∗) in (* (3) 5 -symmetric ensembles

In this work, Bayesian weighted averaging is explored as a proof of concept in extracting
values from � and �∗ correlators. This study is performed on a single (* (3) 5 symmetric gauge
ensemble, which was also used in decay constant calculation in Section 3. Further properties
of the implemented gauge ensemble are outlined in Table 1. Treatment of the 1-quark on this
ensemble is identical to what is described in previous sections, thus allowing for comparison in
calculations between the previous choice of best fit and what is obtained via weighted averaging.
Furthermore, the analysis is restricted to a single 1-quark at the centre of the tuning star, prior to
interpolation. The observable to be calculated is the mass splitting Δ< = �∗ − �, obtained via
a fit of the form '(C) = �∗ (C)

� (C) to the ratio of correlators. The fit is performed on the average of
the forward and backward propagating modes in the region C ∈ [0, =C2 ], being approximated by the
single exponential:

'(C) = � exp(−Δ<C). (8)

5.3 Weighted averaging method as applied to measurement of Δ< of �∗-�

Themass splittingΔ<8 is extracted via fits to �∗/� for each window, 8. The finalΔ< is obtained
via the weighted average procedure described in Equation 6. For this study, the weighted average is
calculated from correlator fits over all possible values of C<8= and C<0G . The fitting windows can be
parameterised so that C ∈ [C<8=, C<0G] and 0 < C<8= < =C

2 − 1 and 1 < C<0G < =C
2 − 1. With =C = 64

in the implemented gauge ensemble and the conditions on C described, there are 496 possible fit
windows that will contribute to the final weighted average Δ<. As proof of principle, there is no
additional window selection criteria even for windows well into the noisy region of the correlator.
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It is assumed for now that additional window selection criteria for ‘good’ windows is currently not
necessary, as the weighting will be small enough that the effect of these wayward measurements
will be minimal. Quantifying this is a topic of further study.

5.4 Results

Figure 5: Heatmap of Bayesian weights against C<8= and C<0G .

The weights evaluated for the 496 choices of C<8= and C<0G are plotted in Figure 5. The larger
weights generally arise from longer fit windows, even when they extend well into the noisy region.
With the largest weights, the Δ<8 calculated on longer plateau lengths dominate the weighted
average result. This demonstrates a susceptibility of the Bayesian implementation of weighted
averaging: that as windows increase ) into the noisy region, the j8 does not increase at the same
rate, meaning that F8 remains large with a preference for these more difficult regions. To avoid this,
future implementations could limit which C<0G fits were allowed into the weighted average. The fit
window with the highest weight is C ∈ [4, 31], one such long fit.

The weighted average over all 496 windows of the �∗ − � mass splitting was found to be
0Δ< = 0.140±0.070(sys)±0.020(stat). This value is consistent with the traditional single-window
output parameters in Figure 7a (analyst choice of window) and Figure 7b (example of poorer choice).

11



P
o
S
(
L
A
T
T
I
C
E
2
0
2
1
)
5
4
9

(* (3) 5 breaking in 5� and 5�B S. A. De La Motte and S. E. Hollitt

Figure 6: Heatmap of Δ<8 against C<8= and C<0G , for Δ<8 within ±(fBHB + f4AA )

6. Conclusion

Wepresent a result 5�B/ 5� = 1.159±0.015 (statistical) +0.076
−0.071 (systematic) usingQCDSF/UKQCD

ensembles with controlled (* (3) 5 breaking. Further work is in progress to reduce the systematic
uncertainty in this measurement. In particular, we explore a weighted fitting strategy as a method
to reduce the uncertainty from fit window choice in calculated 5�B/ 5� values for ensembles close
to the physical point, as the optimal window limits vary with the parameters of the RHQ action.
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(a) Moderate weighting, example analyst window choice: C ∈ [5, 20]

(b) Low weighting, poor quality window choice
C ∈ [20, 30]

Figure 7: Effective masses of �∗ − � ratio, obtained via fit to given window and the corresponding Bayesian
weighting.
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