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We develop a new method to investigate color superconductivity (CSC) on the lattice based on the
Thouless criterion, which amounts to solving the linearized gap equation without imposing any
ansatz on the structure of the Cooper pairs. We perform explicit calculations at the one-loop level
with the staggered fermions on a 83 × 128 lattice and the Wilson fermions on a 43 × 128 lattice,
which enables us to obtain the critical 𝛽(= 6/𝑔2) as a function of the quark chemical potential
𝜇, below which the CSC phase is expected to appear. The obtained critical 𝛽 has sharp peaks
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observed in previous studies on simplified effective models. From the solution to the linearized
gap equation, one can read off the flavor and spatial structures of the Cooper pairs at the critical
𝛽. In the case of massless staggered fermion, in particular, we find that the chiral U(1) symmetry
of the staggered fermions is spontaneously broken by the condensation of the Cooper pairs.
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1. Introduction

The QCD phase diagram is expected to have a rich structure, whose elucidation is one of the
biggest goals in high energy physics. While the first-principles studies of the dense QCD matter
is known to be extremely difficult due to the notorious sign problem, there are various methods
that have been developed in recent years to circumvent this problem. In particular, the complex
Langevin method [1, 2] has been applied to lattice QCD at finite density with promising results; see
Ref. [3] and references therein.

In fact, the QCD phase diagram can be investigated in the high density regime by perturbation
theory thanks to the asymptotic freedom. In particular, it is expected that the color superconductivity
(CSC) [4–8] occurs in the cold dense region considering that the color-anti-triplet channel of the
potential induced by one-gluon exchange is attractive. Qualitative properties of the CSC such as
the scaling of the gap function with respect to the coupling constant have been discussed based on
perturbative QCD [9].

Perturbative studies are expected to be useful not only in exploring the QCD phase diagram
at high density but also in providing predictions for first-principles calculations in the cold dense
region, which seem to be quite promising [10]. While quantitative predictions on the parameter
region in which the CSC occurs were discussed in simplified effective models such as the Nambu–
Jona-Lasinio-like model [7, 8], there have been no such works in QCD. One of the reasons for this is
that one has to solve a nonlinear functional equation known as the gap equation, which is extremely
difficult, in particular, without imposing some ansatz on the gap function.

In this paper, we investigate the CSC by solving the gap equation on the lattice without imposing
any ansatz on the structure of the gap function describing the condensation of the Cooper pairs.
This is possible since the gap equation is reduced on the lattice to a finite number of coupled
equations. Further simplification of the gap equation is achieved by focusing on the critical point
so that the gap equation can be linearized. The condition for the linearized gap equation to have a
nontrivial solution is well known in the condensed matter physics as the Thouless criterion, but to
our knowledge, this is the first time that it was applied to the CSC in QCD.

Thus, our method enables us to provide a quantitative prediction on the parameter region of
the CSC by calculating the critical coupling 𝛽 = 6/𝑔2, which we denote as 𝛽c in what follows, as a
function of the quark chemical potential for the staggered and Wilson fermions. The results for 𝛽c
show peak structure as a function of the chemical potential, which is due to the discretized energy
levels of quarks in a finite volume. We also investigate the structure of the Cooper pairs at 𝛽c from
the solution to the linearized gap equation in the case of massless staggered fermions. From the
results for scalar and pseudo-scalar condensates, we find that the chiral U(1) symmetry is broken
spontaneously. The spatial structure of the Cooper pairs, on the other hand, exhibits behaviors
consistent with the BCS theory of superconductivity.

The rest of this paper is organized as follows. In Section 2, we present our general formalism
for the CSC. In Section 3, we show our numerical results for 𝛽c in the case of staggered fermions,
followed by Section 4, where we investigate the structure of the Cooper pairs at the critical point in
the massless case. In particular, we identify the flavor and spatial structures of the Cooper pairs and
discuss the spontaneous breaking of chiral U(1) symmetry. In Section 5, we present our results for
𝛽c in the case of Wilson fermions. Section 6 is devoted to a conclusion.
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Figure 1: Diagrammatic representation of (a) the gap equation for Σ̃𝑎𝑎′

12,𝜌𝜌′ (𝑝) and (b) M (𝑝𝜌𝜌′) (𝑞𝜎𝜎′) . The
coiled and solid lines stand for the gluon propagator and the free fermion propagator �̃�−1,𝑎𝑎′

𝜌𝜌′ (𝑝), respectively.

2. General formalism for CSC on the lattice

Since we are going to investigate CSC on the lattice for staggered and Wilson fermions, here
we describe a general formalism, which is applicable to both cases. We introduce a fermion field
𝜓𝑎
𝜌 (𝑛), where 𝑛 is the label of sites on the lattice, and 𝑎 is the color index. The index 𝜌 represents

the internal degrees of freedom other than color such as the flavor index and the spinor index
collectively. We also introduce the conjugate field 𝜓𝑎

𝜌 (𝑛).
In order to investigate the condensate of Cooper pairs, we use the Nambu-Gorkov formalism,

in which one introduces the Nambu basis Ψ𝑎
𝜌 (𝑛) = (𝜓𝑎

𝜌 (𝑛), 𝜓
𝑎

𝜌 (𝑛))t [4, 6, 11]. Assuming that
the lattice translational symmetry is not spontaneously broken, it is convenient to work with the
momentum representation since two-point correlation functions are diagonalized with respect to
momenta owing to the momentum conservation. The propagator for the Nambu basis S̃𝑎𝑎′

𝜌𝜌′ (𝑝) in the
momentum representation can be represented by a 2× 2 matrix, which satisfies the Dyson equation

S̃−1,𝑎𝑎′
𝜌𝜌′ (𝑝) = D̃𝑎𝑎′

𝜌𝜌′ (𝑝) + �̃�𝑎𝑎′
𝜌𝜌′ (𝑝) , (1)

where D̃𝑎𝑎′
𝜌𝜌′ (𝑝) is the inverse free propagator defined by D̃𝑎𝑎′

𝜌𝜌′ (𝑝) = diag(�̃�𝑎𝑎′
𝜌𝜌′ (𝑝),−�̃�𝑎𝑎′

𝜌′𝜌 (−𝑝)) with
�̃�𝑎𝑎′

𝜌𝜌′ (𝑝) being the inverse free propagator for 𝜓𝑎
𝜌 (𝑛) and �̃�𝑎𝑎′

𝜌𝜌′ (𝑝) being the self-energy defined as

�̃�𝑎𝑎′
𝜌𝜌′ (𝑝) =

(
Σ̃𝑎𝑎′

11,𝜌𝜌′ (𝑝) Σ̃𝑎𝑎′

12,𝜌𝜌′ (𝑝)
Σ̃𝑎𝑎′

21,𝜌𝜌′ (𝑝) Σ̃𝑎𝑎′

22,𝜌𝜌′ (𝑝)

)
. (2)

A nonvanishing off-diagonal part of the self-energy Σ̃𝑎𝑎′

12(21) ,𝜌𝜌′ (𝑝) corresponds to the appearance of
pair condensate, which is crucial for the CSC, while the diagonal part is considered as higher-order
contributions in our calculation, which is neglected in what follows.

At the one-loop level, the self-consistency equation for Σ̃𝑎𝑎′

12,𝜌𝜌′ (𝑝) or the gap equation is given
by Fig. 1 (a). The gap equation for the other off-diagonal part Σ̃𝑎𝑎′

21,𝜌𝜌′ (𝑝) need not be considered
since it gives the same results as the one for Σ̃𝑎𝑎′

12,𝜌𝜌′ (𝑝). While one can obtain Σ̃𝑎𝑎′

12,𝜌𝜌′ (𝑝) in principle
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by solving the gap equation together with the Dyson equation (1), it does not seem to be feasible to do
so in practice without having a natural ansatz to impose on Σ̃12(𝑝) for arbitrary parameters. Instead,
we focus on the critical point at which Σ̃12(𝑝) → 0 assuming a second-order phase transition. This
reduces the gap equation to a linear equation, which can be solved without imposing any ansatz
on Σ̃12(𝑝). Here we consider the color anti-symmetric component

∑
𝑎𝑏 𝜖𝑎𝑏𝑐Σ̃

𝑎𝑏
12,𝜌𝜌′ (𝑝), for which

the interaction is attractive and hence the Cooper instability is expected. Since a different choice
of 𝑐 simply leads to the same equation, we choose 𝑐 = 3 without loss of generality and define
Σ̃
(−)
12(𝑝𝜌𝜌′) =

∑
𝑎𝑏 𝜖𝑎𝑏3Σ̃

𝑎𝑏
12,𝜌𝜌′ (𝑝), which satisfies the linearized gap equation∑︁

𝑞𝜎𝜎′
M (𝑝𝜌𝜌′) (𝑞𝜎𝜎′) Σ̃

(−)
12(𝑞𝜎𝜎′) = 𝛽 Σ̃

(−)
12(𝑝𝜌𝜌′) . (3)

We have introduced 𝛽 = 2𝑁c/𝑔2, where 𝑔 is the gauge coupling constant with 𝑁c = 3 in the case
at hand. The matrix M (𝑝𝜌𝜌′) (𝑞𝜎𝜎′) is independent of 𝛽, and it is given diagrammatically in Fig. 1
(b). From Eq. (3), one finds that the largest eigenvalue of M gives the critical point

𝛽c = 𝜆max [M] , (4)

which determines the boundary of the normal and superconducting phases. The eigenvector
Σ̃
(−)
12(𝑝𝜌𝜌′) corresponding to the largest eigenvalue, on the other hand, tells us the structure of the

Cooper pairs at the critical point. Such a condition for the critical point is equivalent to the condition
for the divergence of the T-matrix, which is well known as the Thouless criterion [12] in condensed
matter physics. Since the size of the matrix M is finite for a finite lattice, we can calculate the
largest eigenvalue 𝜆max [M] and the corresponding eigenvector numerically by the standard power
iteration method.

3. Critical coupling for the staggered fermions

Let us first consider staggered fermions and present our numerical results for 𝛽c as a function
of the quark chemical potential 𝜇 defined in lattice units. Note that our calculation is valid at weak
coupling, which implies that the results are reliable if 𝛽c � 1. We find that this is possible when the
aspect ratio 𝐿s/𝐿t is sufficiently small, where 𝐿s and 𝐿t represent the spatial and temporal extents
of the lattice, respectively.

Figure 2 shows the result for an 83 × 128 lattice and the quark mass 𝑚 = 0 and 0.1 in lattice
units. We also plot the number of quarks 𝑁q in the same figure for 𝑚 = 0 in the free case. One can
see that the peaks of 𝛽c appear at the values of 𝜇 for which 𝑁q jumps from one plateau to another.
This can be understood theoretically as follows. Let us note first that the energy levels of free quarks
𝐸 (p) = sinh−1

√︃∑3
𝑖=1 sin2 𝑝𝑖 + 𝑚2 are discretized since the momentum p is discretized in a finite

volume. When the chemical potential 𝜇 goes beyond an energy level 𝐸 (p), 𝑁q jumps because the
number of momentum modes below the Fermi sphere increases. Since there are momentum modes
near the Fermi surface in this situation, the Cooper pairs are easy to form, and hence the critical 𝛽c
has a peak at the same 𝜇. This understanding is supported also by the result for 𝑚 = 0.1 in Fig. 2,
where we observe that the peaks shift in accord with the shift of the energy levels. Thus we find that
the CSC region is suppressed when the chemical potential is not close to any of the energy levels of

4
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Figure 2: The critical coupling 𝛽c is plotted as a function of 𝜇 on an 83 × 128 lattice using the staggered
fermions with 𝑚 = 0 (red solid line) and 𝑚 = 0.1 (blue dashed line). The regions above and below these lines
correspond to the normal and color-superconducting phases, respectively. The gray solid line represents the
quark number for 𝑚 = 0 in the free case.

quarks, as has been also observed in the Nambu–Jona-Lasinio-like model [13]. The peak at 𝜇 ∼ 0
is considered to be a finite-size artifact since the Cooper pairs in this case are formed by quarks and
anti-quarks with p = 0, whose density actually vanishes in the infinite volume limit.

4. Structure of the Cooper pairs for the staggered fermions

As we mentioned in Section 2, the structure of the Cooper pairs can be read off from the
eigenvector Σ̃(−)

12(𝑝𝜌𝜌′) corresponding to 𝜆max [M]. For that, we rewrite Σ̃
(−)
12(𝑝𝜌𝜌′) in Eq. (1) into the

anomalous correlation function of the four-flavor Dirac fermion fields in the coordinate space using
the relation between the staggered and Dirac fermions [14] and performing the Fourier transforma-
tion. While our calculation is applicable to the Cooper pairs in any irreducible representations of
the Lorentz group, let us focus, for simplicity, on the scalar (s) and pseudo scalar (ps) condensates
given as

𝐾
𝑓 𝑔

s(ps) (𝑛) =
∑︁
𝑎𝑏

𝜖𝑎𝑏3
〈t𝜓𝑎, 𝑓 (𝑛)Os(ps)𝜓

𝑏,𝑔 (0)
〉
. (5)

Here 𝜓𝑎, 𝑓 (𝑛) represents the Dirac fermion field on the coarse lattice at a site 𝑁 with the color index
𝑎 and the flavor index 𝑓 . We have also introduced Os = 𝛾5𝐶 and Ops = 𝐶, where 𝛾5 = 𝛾1𝛾2𝛾3𝛾4
and the charge conjugation operator 𝐶 = 𝛾2𝛾4 are defined in terms of the Euclidian Dirac gamma
matrices 𝛾𝜇. Note that the overall normalization of 𝐾 𝑓 𝑔

s(ps) (𝑛) is irrelevant since we are solving the
linearized gap equation.

Let us recall here that we are considering the case in which the pair condensate is color-
antisymmetric and it is either a Lorentz scalar or a pseudo-scalar. This forces 𝐾 𝑓 𝑔

s(ps) (0) to be
antisymmetric under the exchange of flavor indices 𝑓 ↔ 𝑔 due to the anti-commuting nature of the
fermion fields. Such condensates can be decomposed as 𝐾 𝑓 𝑔

s(ps) (0) = 𝑎1𝑡
𝑓 𝑔

1 + 𝑎3𝑡
𝑓 𝑔

3 + 𝑎13𝜔
𝑓 𝑔

13 +
𝑎24𝜔

𝑓 𝑔

24 + 𝑎25(𝑡2𝑡5) 𝑓 𝑔 + 𝑎45(𝑡4𝑡5) 𝑓 𝑔, where we have introduced the six independent anti-symmetric
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matrices 𝑡1, 𝑡3, 𝜔13, 𝜔24, 𝑡2𝑡5, and 𝑡4𝑡5, with 𝑡𝜇 = t𝛾𝜇, 𝜔𝜇𝜈 = (𝑖/2) [𝑡𝜇, 𝑡𝜈], and 𝑡5 = 𝑡1𝑡2𝑡3𝑡4. We
have used the representation for the Dirac gamma matrices given by

𝛾𝑖 =

(
0 𝑖𝜎𝑖

−𝑖𝜎𝑖 0

)
, 𝛾4 =

(
𝐼2 0
0 −𝐼2

)
,

where 𝜎𝑖 represent the Pauli matrices and 𝐼2 represents the 2 × 2 identity matrix.
We calculate the coefficients 𝑎1,3,13,24,25,45 numerically from the obtained eigenvector and find

|𝑎13 |/𝑎sum > 0.997 in𝐾 𝑓 𝑔
s (0) and |𝑎24 |/𝑎sum > 0.997 in𝐾 𝑓 𝑔

(ps) (0), where 𝑎sum =
∑

𝑖=1,3,13,24,25,45 |𝑎𝑖 |.
This result suggests the following structures

𝐾
𝑓 𝑔
s (𝑛) =𝜔 𝑓 𝑔

13 𝜅s(𝑛) , (6)

𝐾
𝑓 𝑔
ps (𝑛) =𝜔 𝑓 𝑔

24 𝜅ps(𝑛) , (7)

with the flavor-independent coefficients 𝜅s(ps) (𝑛), which give the spatial structure.
Let us discuss the implications of the flavor structure (6) and (7). Note first that the chiral

SUL(4) × SUR(4) symmetry of the continuum theory is reduced on the lattice to the chiral U(1)
symmetry 𝜓(𝑛) → 𝑒𝑖 𝜃𝛾5⊗𝑡5𝜓(𝑛) in the case of the massless staggered fermions. Whether this
symmetry is spontaneously broken or not depends on the flavor structure of the condensate. Under
the infinitesimal chiral U(1) transformation, Eq. (5) becomes

𝐾
𝑓 𝑔

s(ps) (𝑛) → 𝐾
𝑓 𝑔

s(ps) (𝑛) + 𝑖𝜃
©«
∑︁
𝑓 ′
𝑡
𝑓 𝑓 ′

5 𝐾
𝑓 ′𝑔
ps(s) (𝑛) +

∑︁
𝑔′
𝐾

𝑓 𝑔′

ps(s) (𝑛)𝑡
𝑔𝑔′

5
ª®¬ . (8)

When 𝐾 𝑓 𝑔
s (𝑛) and 𝐾 𝑓 𝑔

ps (𝑛) have the structure (6), (7), we therefore obtain

𝐾
𝑓 𝑔

s(ps) (𝑛) → 𝐾
𝑓 𝑔

s(ps) (𝑛) + 2𝑖𝜃𝜔 𝑓 𝑔

13(24) 𝜅ps(s) (𝑛) (9)

by using 𝜔13𝑡5 = 𝜔24 and 𝜔24𝑡5 = 𝜔13, which implies that the chiral U(1) symmetry is broken
spontaneously. This is in contrast to the other patterns 𝐾s(ps) (𝑛) ∼ 𝑡1, 𝑡3, 𝑡2𝑡5, 𝑡4𝑡5 since they are
invariant under the chiral U(1) transformation as one can show by using Eq. (8). Note that there
is another possibility for condensate 𝐾 𝑓 𝑔

s (𝑛) = 𝜔
𝑓 𝑔

24 𝜅s(𝑛) and 𝐾 𝑓 𝑔
ps (𝑛) = 𝜔

𝑓 𝑔

13 𝜅ps(𝑛) that breaks
the chiral U(1) symmetry spontaneously. Thus, our method is capable of determining not only the
symmetry breaking pattern but also the actual structure of the Cooper pairs thanks to the fact that
we do not have to impose any ansatz on it.

We also investigate the spatial structure of the Cooper pairs represented by 𝜅s(ps) (𝑛). For that, it
is convenient to consider the momentum representations 𝜅s(ps) (𝑝). Figure 3 shows the dependence
of 𝜅s(𝑝) on the spatial momenta 𝑝1 and 𝑝2 for 𝑝3 = 0 and the lowest Matsubara frequency 𝑝4 = 𝜋/𝐿t
chosen at the position of the second peak. One can see that |𝜅s(𝑝) | has relatively large values on the
Fermi surface, which is represented by the blue line, and the values on the Fermi surface are almost
the same. This clearly shows that the quarks on the Fermi surface form the Cooper pairs and they are
spatially isotropic s-waves. Figure 3 (b) shows that all the modes on the Fermi surface have the same
phase. This is consistent with the BCS theory of superconductivity, where the phase of the wave
function is spatially aligned implying that the U(1) particle-number symmetry is spontaneously
broken. The results for 𝜅ps(𝑝) are qualitatively the same as those for 𝜅s(𝑝).
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Figure 3: The 𝑝1 and 𝑝2 dependence of 𝜅s (𝑝) is shown for 𝑝3 = 0 and 𝑝4 = 𝜋/𝐿t with 𝑚 = 0 and
𝜇 = sinh−1 (sin(2𝜋/𝐿s)). Figure (a) shows the absolute value |𝜅s (𝑝) | in arbitrary units, whereas Fig. (b)
shows the phase arg(𝜅s (𝑝)) for the momentum 𝑝 at which |𝜅s (𝑝) | has large values. The blue line represents
the Fermi surface for 𝑝3 = 0.
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Figure 4: The critical coupling 𝛽c is plotted as a function of 𝜇 for the Wilson fermions on a 43 × 128 lattice.
The gray solid line represents the quark number in the free case, whereas the vertical black dotted lines
represent the position of the energy levels of free quarks.

5. Critical coupling for the Wilson fermions

It is expected that various types of CSC appear depending on the number of flavors. An
advantage of the Wilson fermions to the staggered fermions is that one can choose the number of
flavors freely, although the drawback is that one loses explicit chiral symmetry. Figure 4 shows the
result for the critical coupling 𝛽c with the lattice size 43 × 128 and 𝑚 = 0.1. The result does not
depend on the number of flavors except for the one-flavor case, which should be treated in a different
manner since the anti-symmetric flavor structure is not possible. We also show the particle number
of quarks 𝑁q in the free case by the gray solid line and the position of the quark energy levels by the
black vertical lines. As in the case of the staggered fermions, we can see peaks in 𝛽c corresponding
to the jumps of 𝑁q at the energy levels. On the other hand, we observe more structures than in the
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case of staggered fermions, such as splitting of the peaks at the energy levels higher than the third
one. We are currently investigating the structure of the Cooper pairs to clarify the relation to the
splitting of the peaks.

6. Conclusion

We have investigated color superconductivity (CSC) on the lattice based on perturbative calcu-
lations without any ansatz on the structure of the Cooper pairs. In our method, the critical coupling
𝛽c is obtained by calculating the largest eigenvalue of the matrix that appears in the linearized gap
equation, which is feasible on a finite lattice. By applying this method to the staggered fermions,
we have obtained 𝛽c as a function of the chemical potential 𝜇, which gives the parameter region
for CSC. The result shows that 𝛽c has peaks at 𝜇 corresponding to the quark energy levels. We
have also investigated the structure of the Cooper pairs at the critical point from the eigenvector
corresponding to 𝛽c in the massless case. It turns out that the flavor structure of the (pseudo) scalar
condensate thus specified breaks the chiral U(1) symmetry of the staggered fermions spontaneously.
We have also obtained the results of 𝛽c in the Wilson-fermion case, which show some splitting of
the peaks in contrast to the staggered fermions.

In the staggered-fermion case, we have also investigated other types of condensates such as
a pseudo-vector and a tensor as well as the effect of the quark mass on the Cooper pairs and the
degeneracy of the largest eigenvalue, which shall be reported in the forth-coming paper. We hope
that our prediction on the parameter region for CSC is useful in exploring the QCD phase diagram
based on first-principles calculations. We also expect that the structure of the condensate provides
useful information for the construction of the order parameter to detect the CSC. We are currently
trying to observe the CSC on the lattice by using the complex Langevin method (CLM). In order to
explore the parameter regions suggested in the present work, we need to extend our previous study
of dense QCD with the staggered fermions [10] to the case with small aspect ratios of the lattice
size. The results for some candidate of the order parameter for the CSC are presented in Ref. [15].
As for the Wilson fermion, some basic properties of the CLM for 𝑁f = 2, 2 + 1, 3, 4 on lattices with
small aspect ratio are presented in Ref. [16].
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