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We study the convergence of the derivative expansion in HAL QCD method from the finite
volume analysis. Employing the (2+1)-flavor lattice QCD data obtained at nearly physical light
quark masses (<c , < ) ' (146, 525) MeV and the physical charm quark mass, we study two
representative systems, ΩΩ and Ω222Ω222 in the 1(0 channel, where both systems were found to
have a shallow bound state in our previous studies. The HAL QCD potentials are determined at
the leading-order in the derivative expansion, from which finite-volume eigenmodes are obtained.
Utilizing the eigenmode projection, we find that the correlation functions are dominated by the
ground state (first excited state) in the case of ΩΩ (Ω222Ω222). In both ΩΩ and Ω222Ω222 , the
spectra obtained from eigenmode-projected temporal correlators are found to be consistent with
those from the HAL QCD potential for both the ground and first excited state. These results show
that the derivative expansion is well converged in these systems, and also provide a first explicit
evidence that the HALQCDmethod enables us to reliably extract the binding energy of the ground
state even from the correlator dominated by excited scattering states.
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1. Introduction

The determination of hadron interactions is one of the most active areas in lattice QCD these
days. Currently, there are two major theoretical methods, Lüscher’s finite volume method [1]
and HAL QCD method [2–4]. The former first determines a finite volume spectrum from a
temporal correlation function, and converts the spectrum to a scattering phase shift at that energy
through Lüscher’s formula. The latter calculates an energy-independent non-local potential from a
tempo-spatial correlation function, and binding energies and phase shifts are obtained by solving
Schrödinger-type equation with the potential in the infinite volume.

While these two methods are equivalent theoretically, each method has its own pros and cons
in practical calculations. In Lüscher’s method, it is essential to isolate each eigenstate in the
correlator, but it becomes difficult to suppress contaminations from nearby states if the energy
splittings between states are small. In fact, we pointed out [5] that naive plateau identification
for two-baron systems employed in the literature (so-called “direct method”) leads to unreliable
results due to the excited state contaminations. Our finding is also being confirmed by recent
lattice QCD studies with Lüscher’s method [6–8]. On the other hand, HAL QCD method is free
from such a problem (as far as elastic states are concerned), since one can extract the signal of
energy-independent potential even from excited states through its time-dependent formalism [3].
The method, however, introduces another type of systematic errors in practice, because the non-
locality of the potential is usually determined order by order in the derivative expansion. In Ref. [9]
we explicitly determined the potential up to next-to-next-to-leading order (N2LO) and found that
the truncation error is well under control even at the leading-order (LO) at low energies.

Since the calculation of higher order terms in the derivative expansion is usually expensive,
we consider an alternative method [5] in this report to study the convergence of the derivative
expansion. The method essentially examines the consistency between Lüscher’s finite volume
method and the HAL QCD method, utilizing the finite volume eigenmodes obtained from the
HAL QCD potential. Considering that the origin of systematic errors of two methods are quite
independent, the observation of the consistency provides non-trivial confirmation that the systematic
errors are well under control.

In this report, we study two representative systems, ΩΩ and Ω222Ω222 systems in the 1(0
channel near physical quark masses on a large volume (!0 ' 8.1 fm). These systems have several
good characteristics for our study: (1) Heavymass and large volumemake energy splittings between
finite volume eigenstates small (∼ a few MeV) (2) Absence of valence ud-quarks makes statistical
fluctuations small (3) It was found that there is one shallow bound state for each system [10, 11]. In
addition, it turns out that the correlator of each system serves as two representative cases, i.e., the
ΩΩ correlator is dominated by the ground state, while the Ω222Ω222 correlator is dominated by the
first excited state. In this report, we examine whether binding energies and scattering phase shifts
are reliably extracted for both cases in the HAL QCD method.

2. HAL QCD method and finite volume analysis

The key quantity in the HAL QCD method is the equal-time Nambu-Bethe-Salpeter (NBS)
wave function. In the case of a �� system with � = Ω or Ω222 in this study, it is defined by
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q, (r) ≡ 1//� · 〈0|�̂(r, 0)�̂(0, 0) |��,,〉, where �̂ is an operator for a �-baryon with its wave-
function renormalization constant /� and |��,,〉 denotes the �� eigenstate at the total energy
of , = 2

√
:2 + <2

�
, and we consider the elastic region, , < ,th. Since the information of the

phase shift is encoded in the asymptotic behavior (A ≡ |r | → ∞) of the NBS wave function, one
can define energy-independent non-local potential, * (r, r ′), through the Schrödinger equation,
(�, − �0)q, (r) =

∫
3r ′* (r, r ′)q, (r ′), where �0 = −∇2/(2`) and �, = :2/(2`) with the

reduced mass ` = <�/2 [2–4].
Generally speaking, the NBS wave function at each eigenenergy can be extracted from the

four-point correlator. Such a procedure, however, is exponentially difficult in practice, if one relies
on the ground state (or eigenstate) saturation utilizing the temporal behavior of the correlator.
The time-dependent HAL QCD method [3] overcomes this problem by exploiting the fact that the
same potential governs all elastic states. Namely, we define the normalized four-point function
as '(r, C) ≡ ∑

x 〈0|�̂(r + x, C)�̂(x, C)J (0) |0〉/4−2<�C and the potential can be determined by the
following master formula:(

1
4<�

m2

mC2
− m

mC
− �0

)
'(r, C) =

∫
3r ′* (r, r ′)'(r ′, C). (1)

The systematic error in this equation is the contaminations from the inelastic states, which can be
suppressed by taking moderately large Euclidean time, C � (,th −,)−1.

In practical calculation, non-locality of the potential is handled by the derivative expansion at
low energies, * (r, r ′) = ∑

=+= (r)∇=X(r − r ′). For instance, the central potential + (A) at the LO
is given as

+ (A) = '−1(r, C)
(

1
4<�

m2

mC2
− m

mC
− �0

)
'(r, C). (2)

This procedure, however, introduces new systematic errors associated with the truncation in the
derivative expansion. In order to quantify such systematic uncertainties, it is most desirable
to calculate the higher order terms explicitly and examine the convergence. Such a study was
performed up to N2LO for the ΞΞ system in the 1(0 channel at<c = 0.51 GeV [9], and it was found
that the truncation error is well under control even at the LO at low energies. However, the explicit
computations of higher order terms require large resources, which leads us to study an alternative
method in this report.

We here perform the finite volume analysis [5] as a new measure which can quantify the
systematic uncertainties of the derivative expansion without requiring any additional lattice QCD
simulation. In this analysis, we first consider the following Hamiltonian � in a finite box, and
calculate its eigenenergies and eigenfunctions (eigenmodes),

� = �0 ++ (A), �k= = n=k=, (3)

where + (A) is the HAL QCD potential obtained at the LO in the derivative expansion, and n=
is related to the relativistic energy, ,= = 2

√
n=<� + <2

�
. Obtained eigenfunctions are useful to

isolate the contribution from each eigenmode in the correlator. More specifically, we utilize the
eigenfunctions to construct a two-baryon sink operator optimized for each eigenstate on a finite

3



P
o
S
(
L
A
T
T
I
C
E
2
0
2
1
)
5
6
4

Finite volume analysis on systematics of the derivative expansion in HAL QCD method Takumi Doi

volume, ∑
r

k†= (r)
[∑

x

�̂(r + x, C)�̂(x, C)
]
. (4)

A temporal correlator with such an optimized two-baryon sink operator can be obtained as follows,

'= (C) ≡
∑
r

k†= (r)'(r, C), (5)

where k= serves as a projection operator to the designated eigenstate.
One can extract the finite volume energy from this temporal correlator, which value has one-

to-one correspondence to the phase shift via Lüscher’s formula. Note that, while the information
of the HAL QCD potential is implicitly used to construct the optimized operator, the theoretical
formulation is solely based on Lüscher’s finite volume method. The result of the finite volume
spectrum can be compared to that obtained directly from theHALQCDpotential (i.e., eigenenergies
of � on a finite volume). If we observe consistency, it is non-trivial confirmation that the systematic
errors in the HAL QCD potential are well under control.

3. Lattice QCD setup

Numerical data used in this study are obtained from the (2+1)-flavor gauge configurations with
Iwasaki gauge action at V = 1.82 and nonperturbatively $ (0)-improved Wilson quark action with
stout smearing at nearly physical quark masses [12]. The relativistic heavy quark (RHQ) action is
used for the charm quark to remove cutoff errors associated with the charm quark mass up to next-to-
leading order, with RHQ parameters determined in Ref. [13]. The lattice cutoff is 0−1 ' 2.333 GeV
(0 ' 0.0846 fm) and the lattice volume is (!0)4 = (960)4 ' (8.1 fm)4. The hadron masses most
relevant to this study are (<c , < , <Ω, <Ω222 ) ' (146, 525, 1712, 4796)MeV. TheNBS correlation
functions for ΩΩ and Ω222Ω222 systems are calculated by the unified contraction algorithm [14]
with the wall-type source operator combined with the Coulomb gauge fixing. In order to reduce
statistical fluctuations, forward and backward propagations are averaged, the hypercubic symmetry
on the lattice (4 rotations) are utilized, and multiple measurements are performed by shifting the
source position along the temporal direction. The total measurements for ΩΩ (Ω222Ω222) amounts
to 307200 (896). For more details, see Refs. [10, 11].

4. Results

In Fig. 1, we show the LOHALQCD potentials+ (A) in the 1(0 channel forΩΩ at C/0 = 17 and
Ω222Ω222 at C/0 = 26, where C/0 are chosen so that contaminations from inelastic excited states
are suppressed in the single-baryon correlators. By solving the Schrödinger equation in the infinite
volume, we find that each system forms a loosely bound state with the binding energy � ' 1.6 MeV,
root-mean-square distance

√
〈A2〉 ' 3.4 fm for ΩΩ [10], and � ' 5.7 MeV,

√
〈A2〉 ' 1.1 fm for

Ω222Ω222 [11]. (If we consider the effect of the Coulomb repulsion, both dibaryons are located in
the unitary regime [11], but we study only QCD in this report.)

Using the obtained potentials, we consider the HAL QCD Hamiltonian � = �0 ++ on a finite
volume and calculate eigenmodes in the �1 representation. The lowest four eigenfunctions k= with

4



P
o
S
(
L
A
T
T
I
C
E
2
0
2
1
)
5
6
4

Finite volume analysis on systematics of the derivative expansion in HAL QCD method Takumi Doi

Figure 1: The LO HAL QCD po-
tentials + (A) for ΩΩ(= ΩBBBΩBBB)
(green circles) and Ω222Ω222 (red
squares) in the 1(0 channel.

Figure 2: The lowest four eigenfunctions (colored points) in the �1
representation of the HAL QCD Hamiltonian on a finite volume for
ΩΩ(= ΩBBBΩBBB) (left) and Ω222Ω222 (right). The black solid lines
denote the bound state wavefunctions in the infinite volume.

= = 0, 1, 2 and 3 are shown in Fig. 2, which are normalized as
∑

r |k= (r) |2 = 1 and k= (0) > 0.
Shown together are the bound state wavefunctions kinf., which are calculated in the infinite volume.

As described in Sec. 2, each eigenfunction can be used as the projection operator for the
corresponding eigenstate. This enables us to decompose the correlators, '(r, C) and '(C), as

'(r, C) =
∑
=

0=k= (r)4−(Δ�=)C ,

'(C) ≡
∑
r

'(r, C) =
∑
=

1=4
−(Δ�=)C ,

(6)

with Δ�= ≡ ,= − 2<�. Here, 0= and 1= represent the magnitude of contribution of the =-
th state to the correlator '(r, C) and '(C), respectively, and they can be determined by 0= =∑

r k
†
= (r)'(r, C)4 (Δ�=)C , 1= = 0=

∑
r k= (r) with Δ�= calculated from the eigenenergies of �. In

Fig. 3, we show 0=/00 and 1=/10 with = = 0, 1, 2 and 3 for both ofΩΩ andΩ222Ω222 . We find that
two systems correspond to two different representative cases: the correlator of ΩΩ is dominated by
the ground state, while that of Ω222Ω222 is dominated by the first excited state. One can intuitively
understand the origin of this observation. In the case of ΩΩ, the ground state wavefunction is
long-ranged in A , and thus the lattice source operator constructed by the wall source is expected to
couple the ground state strongly. On the other hand, the ground state wavefunction of Ω222Ω222 is
much more short-ranged, and the coupling between the lattice source operator and the ground state
is expected to be suppressed.

In order to examine the systematic uncertainties of the derivative expansion, we construct
the optimized two-baryon sink operator utilizing the eigenfunctions (Eq. (4)), and calculate the
eigenmode-projected temporal correlator, '= (C) (Eq. (5)). In Fig. 4, we show the effective energies
Δ�eff

= (C) obtained from '= (C) with = = 0 (the ground state) and = = 1 (the first excited state) for
both ΩΩ and Ω222Ω222 . Shown together are the corresponding Δ�= calculated directly from the
HAL QCD Hamiltonian �.

In both cases of ΩΩ and Ω222Ω222 , we find that the effective energies Δ�eff
= (C) are stable in

terms of C, which values are consistent with Δ�= for both of the ground state (= = 0) and the first
excited state (= = 1). This establishes the consistency between Lüscher’s finite volume method
and the HAL QCD method, indicating that systematic errors associated with the truncation of the
derivative expansion are well under control. In fact, if such artifacts were to be large, eigenfunctions

5
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Figure 3: The ratio 0=/00 (red squares) and 1=/10
(blue circles) for lowest four states (= = 0, 1, 2, 3) as
a function of Δ�= for ΩΩ(= ΩBBBΩBBB) (upper) and
Ω222Ω222 (lower).
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Figure 4: The effective energies Δ�eff
= (C) from the

projected temporal correlators '= (C) for the ground
state (= = 0, red squares) and the first excited
state (= = 1, green diamonds) for ΩΩ (upper) and
Ω222Ω222 (lower). The red (green) bands show Δ�0
(Δ�1) obtained from the HALQCDHamiltonian �.
The black pentagons represent the effective energies
from the temporal correlators without projection.

k= (A) would be so different from the =-th eigenstate of the system that the effective energies from
'= (C) would be distorted and do not agree with those from �. Our observation also confirms that
the HAL QCD method can make reliable predictions regardless whether a correlator is dominated
by the ground state or (first) excited state.

This is in sharp contrast to the naive extraction of finite volume energies from the temporal
correlators. To demonstrate this point, we show in Fig. 4 the effective energies from the temporal
correlators without any sophisticated projection, i.e., '(C) = ∑

r '(r, C). Such effective energies
have been customary employed in the “direct method” to calculate the ground state spectrum for
two-baryon systems. We find that effective energies show stable plateau-like structures, which
values, however, significantly deviate from the correct values of the ground states. In particular, the
effective energy of Ω222Ω222 is very close to the value of the first excited state, reflecting the fact
that the Ω222Ω222 correlator is dominated by the first excited state. The calculations based on such
pseudo-plateaux, of course, lead to unrealiable predictions.
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5. Conclusions

We studied the convergence of the derivative expansion in the HAL QCD potential. As good
representative systems, we considered ΩΩ and Ω222Ω222 in the 1(0 channel, each of which has
a shallow bound state. The lattice calculations were performed in (2+1)-flavor QCD with nearly
physical light quark masses (<c , < ) ' (146, 525) MeV and the physical charm quark mass.

The HAL QCD potentials were determined at the leading-order in the derivative expansion.
The corresponding finite-volume eigenmodes were obtained, from which the eigenmode projection
on the correlator was performed. Our finite volume analysis showed that the correlation function is
dominated by the ground state (first excited state) in the case of ΩΩ (Ω222Ω222). For both ΩΩ and
Ω222Ω222 systems, the spectra obtained from eigenmode-projected temporal correlators were found
to be consistent with those from the HAL QCD potential. This serves as a non-trivial consistency
check between Lüscher’s finite volume method and the HAL QCD method, and confirms that the
derivative expansion in the HAL QCD method is well converged in these systems. In addition, we
conclude that the HAL QCD method can make reliable predictions regardless whether a correlator
is dominated by the ground state or (first) excited state. It is particularly striking that the HAL QCD
potential obtained from the correlator dominated by the first excited state can determine the binding
energy of the ground state reliably.
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