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It is well known that the deconfinement transition temperature for SU(Nc) gauge theory is almost

independent of Nc , and the transition is first order for Nc ≥ 3. In the real world (Nc = 3, light

quarks) it is a crossover located far away from the pure gauge value. What happens to the transition

temperature at fixed fermion mass if the number of fermion flavors is held constant (Nf = 2) and

Nc is varied? There are multiple plausible stories, only one of which appears to be true when the

systems are simulated on the lattice. I describe the physics issues which surround the question

and my lattice - based answer to it.
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Funny business from the large Nc finite temperature crossover Thomas DeGrand

The limit of QCD when the number of colors Nc becomes large is a theorist’s playground for

studying QCD [1–3]. It has a small lattice literature, checking its predictions for nonperturbative

quantities such as masses and matrix elements. (See Refs. [4–6] for reviews.) In most cases with a

lattice study, the lattice confirms its simple large Nc prediction.

Why study large Nc QCD with lattice methods? It’s well known that QCD simplifies at large

Nc (it basically becomes a theory of open strings). QCD also idealizes at large Nc: mesons are q ¹q

bound states, baryons are bound states of Nc quarks, and hadronic wave functions are presumed

to become independent of Nc as shown by the Nc scaling of matrix elements. Most large Nc

predictions are of nonperturbative quantities (even though they are often based on color counting

for Feynman diagrams) and these predictions ought to be subjected to nonperturbative tests.

Large Nc lattice calculations are pretty straightforward: Simulate across Nc at fixed bare ’t

Hooft coupling λ = g
2Nc or β ∝ N2

c . Discover that this fixes the lattice spacing to be nearly

equal across Nc . Measure the same observables across Nc. Scale the observable appropriately (for

example, decay constants scale as
√

Nc) and observe curve collapse (again for example fPS/
√

Nc

versus quark mass).

(Disclaimer: often people use some gluonic observable like the string tension or flow parameter

to match lattice spacings, rather than the bare coupling. The results are the same up to 1/Nc

corrections, which can be pushed from place to place by making different scale setting choices.)

Usually, there is a simple story for any observable at large Nc. But there is one observable

which lacks a simple story – or – said better – there are at least three simple stories. That is the

finite temperature crossover for QCD with a fixed number of flavors, as a function of the quark mass

and Nc .

The first possibility comes from the naive large Nc expectation that gluonic degrees of freedom

dominate fermionic ones in the large Nc limit. The pure gauge transition is first order for Nc ≥ 3

and the transition temperature is nearly independent of Nc [7, 8]. As the fermion mass falls from

infinity the transition becomes a crossover. Shouldn’t the transition remain first order and at the

same value as the pure gauge transition, with the end point pushing to ever smaller fermion mass as

Nc rises?

The second scenario assumes the physics of the transition is dominated by naive chiral symmetry

breaking. QCD at all Nc has an SU(Nf ) × SU(Nf ) symmetry which undergoes spontaneous

symmetry breaking to SU(Nf ). The Pisarski - Wilczek analysis [9] approximates the Goldstone

sector as a linear sigma model. For Nf = 2 the system is expected to have a second order transition

at zero fermion mass, with O(4) critical exponents. Second order transitions are unstable under

perturbation, so the transition becomes a crossover away from mq = 0. This should be true for any

Nc.

The issue then is, how does the crossover temperature scale with Nc? Linear sigma models

contain one dimensionful parameter, the vacuum expectation value of the scalar field, and all

dimensionful observables (the pseudoscalar decay constant fPS , and the crossover temperature Tc

itself) are proportional to it. We already know that fPS ∝
√

Nc . Thus the naive prediction of the

second scenario is Tc ∝
√

Nc [10].

The third scenario is older than QCD. Confining theories are expected to show an exponentially

growing spectrum of resonances with mass, forming a Hagedorn spectrum [11]. The tower of

resonances implies a limiting temperature T0 and this implies a crossover temperature Tc ∼ T0 [12].
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In the real world, the Hagedorn temperature is about 160 MeV. The extension of the story for large

Nc and nonzero Nf is that the spectrum of meson resonances is basically identical across Nc . If

two theories have the same spectrum, then they ought to have the same critical properties. So the

third prediction is that any Nc , 3 with Nf = 2 will qualitatively resemble Nc = 3, Nf = 2. (Since

large Nc with nonzero Nf is different from quenched QCD, which only has glueballs, its Hagedorn

temperature is different.)

This year I finished a little large Nc study of Nf = 2 QCD with Nc = 3, 4, and 5 with medium

heavy fermions, (mPS/mV )2 ∼ 0.25−0.65 [13]. The answer I found is that the third scenario is most

correct: the three systems show nearly identical crossover behavior as a function of temperature.

All the technical details are in the paper, but in a few words, this is what I did. I used clover

fermions. The chiral condensate for Wilson type fermions has a set of divergent 1/an pieces, but

the temperature dependent condensate is well defined [14, 15]

〈

¹ψψ
〉

sub
=

〈

¹ψψ
〉

T
−
〈

¹ψψ
〉

T=0
. (1)

I measured
3

Nc

t
3/2
0
Σ(T) = 3

Nc

t
3/2
0

× mq(∆PP(T) − ∆PP(T = 0)) (2)

where (explicitly showing the conversion from the lattice quantity computed from clover fermions

to a continuum one)

∆PP(T) = ∆̂PP(Nt )(1 − 3κ

4κc
)2. (3)

The lattice observable is

∆̂PP(Nt ) =
Nt
∑

t=0

∑

x

〈P(x, t)P(0,0)〉 (4)

where P(x, t) = ¹ψ(x, t)γ5ψ(x, t) is the pseudoscalar current. The factor of t
3/2
0

in Eq. 2 makes the

observable dimensionless and the overall factor of 3/Nc is included to show collapse to a common

curve across Nc when the condensate scales proportional to Nc as expected by large Nc counting.

Two figures from the paper show the results: the condensate itself in Fig. 1 and ∆Σ(T)/∆T in

Fig. 2.

How dull can things be? There is a smooth crossover showing chiral restoration at the same

temperature across Nc. The derivative in Fig. 2 was my attempt to see something with a peak.

There is a peak but it is very broad. The location of the crossover is intermediate between the pure

gauge result of Refs. [7, 8] and SU(3) results at the physical point. There is no sign of anything first

order.

So what can we make of this? There is no first order transition. Apparently, fermions are still

sometimes important degrees of freedom at large Nc.

What about Pisarski - Wilczek? It’s well known that pions in QCD are NOT described by a

linear sigma model (see Gasser and Leutwyler, Ref. [16]). The linear sigma model is really only

used to make statements about the critical properties of a system. This does not include the critical

temperature, which is not universal. Only critical exponents are universal.

What about a connection with the spectrum? It’s not possible to test for a Hagedorn spectrum

directly (yet) for any Nc . (Perhaps one should be more modern and talk about the hadron resonance
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Figure 1: The temperature dependent condensate, rescaled by 3/Nc , as a function of temperature, in

appropriate units of t0. Squares, octagons, and diamonds label Nc = 3, 4, and 5. (a) (mPS/mV )2 ∼ 0.63; (b)

(mPS/mV )2 ∼ 0.5; (c) (mPS/mV )2 ∼ 0.25.

gas model – a sum over all the resonances in the Review of Particle Properties.) But basically all

mesons created with an interpolating field ¹ψΓψ mesons (S-wave and P-wave mesons) are known

to have an Nc−independent spectrum. Furthermore, the scaling of the pseudoscalar decay constant

fPS ∝
√

Nc means that the amplitude for pion scattering A(ππ → ππ) ∝ 1/Nc: pions (like other

hadrons) don’t interact at large Nc . In addition, large Nc scaling says that the vector meson decay

constant fV ∼ 〈γ |ρ〉 ∝
√

Nc and vector dominance says gρππ ∝ 1/〈γ |ρ〉 ∝ 1/
√

Nc. (For a textbook

discussion, see Ref. [17], being careful with conventions defining fV .) Again, hadrons don’t interact

at large Nc. So what else is left but the density of states?

There is a lattice test one could do: compare the trace anomaly (ǫ − 3P)/T4 for T < Tc (ǫ is

the energy density, P is the pressure) to a hadron resonance gas model, or just compare one Nc to

another. Results from all Nc’s should match.

Let’s summarize:
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Figure 2: ∆Σ(T)/∆T , rescaled by 3/Nc , as a function of temperature, in appropriate units of t0. Squares,

octagons, and diamonds label Nc = 3, 4, and 5. (a) (mPS/mV )2 ∼ 0.63; (b) (mPS/mV )2 ∼ 0.5; (c)

(mPS/mV )2 ∼ 0.25.

My numerics were not very high quality but the effect was so obvious, it didn’t matter.

It might be interesting to do large Nc thermodynamics “right.” This probably means using

staggered fermions since the volume scaling for thermodynamics is so fierce. A lot of the continuum

quark gluon plasma phenomenology is large Nc based (AdS/CFT certainly is) and some predictions

might be checked by going to large Nc on the lattice.
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