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In order to understand the role of QCD in the early universe, we perform hybrid Monte-Carlo

simulation of lattice QCD with # 5 = 2 + 1 + 1 optimal domain-wall quarks at the physical point,

on the 643 × (6, 8, 10, 12, 16, 20, 64) lattices, each with three lattice spacings, in which the lattice

spacings and the bare quark masses are determined on the 644 lattices. The resulting gauge

ensembles provide a basis for studying finite temperature QCD with # 5 = 2 + 1 + 1 domain-

wall quarks at the physical point. In this Proceeding, we present our first result on the topological

susceptibility of the QCD vacuum. The topological charge of each gauge configuration is measured

by the clover charge in the Wilson flow at the same flow time in physical units, and the topological

susceptibility jC (0,)) is determined for each ensemble with lattice spacing 0 and temperature ) .

Using the topological susceptibility jC (0,)) of 15 gauge ensembles with three lattice spacings and

different temperatures in the range ) ∼ 155 − 516 MeV, we extract the topological susceptibility

jC ()) in the continuum limit.
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1. Introduction

The topological susceptibility jC is the most crucial quantity to measure the quantum fluctua-

tions of the QCD vaccum. Theoretically, the topological susceptibility is defined as

jC = lim
+→∞

〈&2
C 〉

+
, (1)

where &C is the integer-valued topological charge of the gauge field in the 4-dimensional volume+ ,

&C =
62n`a_f

32c2

∫

34G tr[�`a (G)�_f (G)], (2)

and �`a = )0�0
`a is the matrix-valued field tensor, with the normalization tr()0)1) = X01/2.

At zero temperature, jC is related to the chiral condensate Σ,

Σ = − lim
<@→0

lim
+→∞

1

+

∫

34G 〈@̄(G)@(G)〉, (3)

the order parameter of the spontaneously chiral symmetry breaking, and its nonzero value gives the

majority of visible (non-dark) mass in the present universe.

For QCD with D and 3 light quarks, the leading order chiral perturbation theory (ChPT) gives

the relation [1]

jC = Σ

(

1

<D

+ 1

<3

)−1

, (4)

which shows that jC is proportional to Σ. This implies that the non-trivial topological quantum

fluctuations in the QCD vacuum is the origin of the spontaneously chiral symmetry breaking. In

other words, if jC is zero, then Σ is also zero and the chiral symmetry is unbroken, and the mass of

the nucleon could be as light as ∼ 10 MeV rather than ∼ 940 MeV. Moreover, jC breaks the *�(1)
symmetry and resolves the puzzle why the flavor-singlet [′ is much heavier than other non-singlet

(approximate) Goldstone bosons [2–4].

At temperature ) > )2, the chiral symmetry is restored and Σ = 0, thus the condition for

deriving (4) goes away, and the relation between jC and Σ no longer holds. In other words, for

) > )2, jC and Σ are independent, thus the restoration of chiral symmetry does not necessarily

implies the restoration of *�(1) symmetry. Interestingly, the non-trivial quantum fluctuations of

the QCD vacuum at ) > )2 only have the possibility to give a nonzero jC but not the Σ.

For ) > )2, jC () ) could play an important role in generating the majority of the mass in the

universe, as a crucial input to the axion mass and energy density, a promising candidate for the

dark matter in the universe. The axion [5–7] is a pseudo Nambu-Goldstone boson arising from the

breaking of a hypothetical global chiral U(1) extension of the Standard Model at an energy scale

5� much higher than the electroweak scale, the Pecci-Quinn mechanism. This not only solves the

strong CP problem, but also provides an explanation for the dark matter in the universe. The axion

mass at temperature ) is proportional to
√

jC () ), which is one of the key inputs to the equation

of motion for the axion field evolving from the early universe to the present one, with solutions

predicting the relic axion energy density, through the misalignment mechanism [8–10].

For) < )2, the ChPT provides a prediction of jC () ) with the input jC (0) at the zero temperature

[11, 12]. However, for ) > )2, the chiral symmetry is restored and the ChPT breaks down, thus the
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determination of jC () ) requires a non-perturbative treatment from the first principles of QCD. To

this end, lattice QCD provides a viable nonperturbative determination of jC () ). Nevertheless, it

becomes more and more challenging as the temperature gets higher and higher, since in principle the

non-trivial configurations are more suppressed at higher temperatures, which in turn must require a

much higher statatics in order to give a reliable determination. So far, direct simulations have only

measured jC () ) up to ) ∼ 550 MeV.

Recent lattice studies of jC () ) aiming at the axion cosmology include various simulations with

# 5 = 0, 2 + 1, and 2 + 1 + 1, where the lattice fermions in the unquenched simulations include the

staggered fermion, the Wilson fermion, and the twisted-mass Wilson fermion [13–19]. For recent

reviews, see, e.g., Refs. [20, 21] and references therein.

In this study, we perform the HMC simulation of lattice QCD with # 5 = 2 + 1 + 1 optimal

domain-wall quarks at the physical point, on the 643 × (6, 8, 10, 12, 16, 20, 64) lattices, each with

three lattice spacings 0 ∼ (0.064, 0.068, 0.075) fm. The bare quark masses and lattice spacings are

determined on the 644 lattices. The topological susceptibility of each gauge ensemble is measured

by the Wilson flow at the flow time C = 0.8192 fm2, with the clover definition for the topological

charge. Using the topological susceptibility jC (0, ) ) of 15 gauge ensembles with 3 different lattice

spacings and different temperatures in the range ) ∼ 155 − 516 MeV, we extract the topological

susceptibility jC () ) in the continuum limit.

2. Gauge ensembles

Our present simulations with physical (D/3, B, 2) on the 643×(6, 8, 10, 12, 16, 20, 64) ≡ #3
G×#C

lattices are extensions of our previous ones [22–24], using the same actions and algorithms, and the

same simulation code with tunings for the computational platform Nvidia DGX-V100. Most of our

production runs were performed on 10-20 units of Nvidia DGX-V100 at two institutions in Taiwan,

namely, Academia Sinica Grid Computing (ASGC) and National Center for High Performance

Computing (NCHC), from 2019 to 2021. Besides Nvidia DGX-V100, we also used other Nvidia

GPU cards (e.g., GTX-2080Ti, GTX-1080Ti, GTX-TITAN-X, GTX-1080) for HMC simulations

on the 643 × (6, 8, 12) lattices, which only require 8-22 GB device memory. We outline our HMC

simulations as follows.

For the gluon fields, we use the Wilson plaquette action

(6 (*) = V
∑

plaq.

{

1 − 1

3
ReTr(*?)

}

,

where V = 6/62
0
. Then setting V to three different values {6.15, 6.18, 6.20} gives three different

lattice spacings. For the quark fields, we use the optimal domain-wall fermion [25] and its extension

with the '5 symmetry [26]. For domain-wall fermions, to simulate # 5 = 2 + 1 + 1 amounts to

simulate # 5 = 2 + 2 + 1 since

(

det D(<D/3)
det D(<%+)

)2
det D(<B)

det D(<%+)
det D(<2)

det D(<%+)
=

(

det D(<D/3)
det D(<%+)

)2 (
det D(<2)

det D(<%+)

)2
det D(<B)
det D(<2)

, (5)

where D(<@) denotes the domain-wall fermion operator with bare quark mass <@, and <%+ is

the Pauli-Villars mass. Since the simulation of 2-flavors is more efficient than that of one-flavor,
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we use the RHS of (5) for our HMC simulations. For the two-flavor factors, we use the # 5 = 2

pseudofermion actions [27, 28]. For the one-flavor factor, we use the exact one-flavor pseudofermion

action (EOFA) for DWF [29]. The parameters of the pseudofermion actions are fixed as follows. For

the D(<@) defined in Eq. (2) of Ref. [29], we fix 2 = 1, 3 = 0, <0 = 1.3, #B = 16, _<0G = 6.20,

and _<8= = 0.05. In the molecular dynamics, in order to enhance the efficiency, we use the Omelyan

integrator, the Sexton-Weingarten multiple time scale method, and the mass preconditioning. The

linear systems for computing the fermion forces and actions are solved by the conjugate gradient

with mixed precision.

Table 1: The lattice parameters and statistics of

the 15 gauge ensembles with ) > )2 .

V 0[fm] #G #C ) [MeV] #confs

6.20 0.0636 64 20 155 581

6.18 0.0685 64 16 180 650

6.20 0.0636 64 16 193 1577

6.15 0.0748 64 12 219 566

6.18 0.0685 64 12 240 500

6.20 0.0636 64 12 258 1373

6.15 0.0748 64 10 263 690

6.18 0.0685 64 10 288 665

6.20 0.0636 64 10 310 2547

6.15 0.0748 64 8 329 1581

6.18 0.0685 64 8 360 1822

6.20 0.0636 64 8 387 2665

6.15 0.0748 64 6 438 1714

6.18 0.0685 64 6 479 1983

6.20 0.0636 64 6 516 3038

The initial thermalization of each ensemble is

performed in one node with 1-8 GPUs intercon-

nected by the NVLink. After thermalization, a set

of gauge configurations are sampled and distributed

to 8-16 simulation units, and each unit performs an

independent stream of HMC simulation. Here one

simulation unit consists of 1-8 GPUs in one node,

depending on the size of the device memory and the

computational efficiency. Then we sample one con-

figuration every 5 trajectories in each stream, and

obtain a total number of configurations for each en-

semble. The statistics of the 15 gauge ensembles

with ) > )2 ∼ 150 MeV are listed in Table 1, where

) = 1/(#C0).
The lattice spacings and bare quark masses are

determined on the 644 lattice. For the determination

of the lattice spacing, we use the Wilson flow [30, 31]

with the condition

{C2〈� (C)〉}
�

�

C=C0
= 0.3,

to obtain
√
C0/0, then to use the input

√
C0 =

0.1416(8) fm [32] to obtain the lattice spacing 0. The lattice spacings for V = {6.15, 6.18, 6.20}
are listed in Table 2. In all cases, the spatial volume satisfies !3 > (4 fm)3 and "c! & 3.

Table 2: The lattice spacings and the bare quark

masses of the gauge ensembles.

V 0[fm] <D/30 <B0 <20

6.15 0.0748(1) 0.00200 0.064 0.705

6.18 0.0685(1) 0.00180 0.058 0.626

6.20 0.0636(1) 0.00125 0.040 0.550

For each lattice spacing, the bare quark masses

of D/3, B and 2 are tuned such that the lowest-lying

masses of the meson operators {D̄W53, B̄W8B, 2̄W82}
are in agreement with the physical masses of

{c± (140), q(1020), �/k (3097)} respectively. The

bare quark masses of D/3, B, and 2 of each lattice

spacing are listed in Table 2.

To measure the chiral symmetry breaking due

to finite #B = 16, we compute the residual mass

according to the formula derived in Ref. [33]. The

residual masses of D/3, B, and 2 quarks are computed for each of the 15 ensembles in this study,

and they are less than 1.86%, 0.05% and 0.002% of their bare masses respectively. In the units of
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MeV/22, the residual masses of D/3, B and 2 quarks are less than 0.09, 0.08, and 0.04 respectively.

This asserts that the chiral symmetry is well preserved such that the deviation of the bare quark

mass <@ is sufficiently small in the effective 4D Dirac operator (�2 +<@)/(1+ A�2) of the optimal

domain-wall fermion, for both light and heavy quarks. In other words, the chiral symmetry in

our simulations should be sufficiently precise to guarantee that the hadronic observables can be

determined with a good precision, with the associated uncertainty much less than those due to

statistics and other systematic ones.

3. Topological charge and topological susceptibility

T[MeV]

100 200 300 400 500


t1

/4
[f

m
-1

]

0.1

0.2

0.3

0.4

0.5

a ~ 0.075 fm

a ~ 0.068 fm

a ~ 0.064 fm

a = 0 (continuum)

Figure 1: The fourth root of topological susceptibility j
1/4
C

versus the temperature ) .

The topological charge &C of each

configuration is measured by the Wilson

flow, using the clover definition. The Wil-

son flow equation is integrated from the

flow time C/02
= 0 to 256 with the step

size 0.01. In order to extrapolate the topo-

logical susceptibility jC = 〈&2
C 〉/+ to the

continuum limit, &C is required to be mea-

sured at the same physical flow time for

each configuration, which is chosen to be

0.8192 fm2 such that jC attains a plateau

for each ensemble in this study.

The results of j
1/4
C (0, ) ) of 15 gauge

ensembles are plotted in Fig. 1, which are

denoted by blue circles (0 ∼ 0.075 fm),

red inverted triangles (0 ∼ 0.068 fm), and

green squares (0 ∼ 0.064 fm). First, we observe that the 5 data points of j
1/4
C at high temperature

) > 350 MeV can be fitted by the power law j
1/4
C () ) ∼ )−?, independent of the lattice spacing

0. However, the power law cannot fit all 15 data points. In order to construct an analytic formula

which can fit all data points of jC () ) for all temperatures, one considers a function which behaves

like the power law ∼ ()2/) ) ? for ) ≫ )2, but in general it incorporates all higher order corrections,

i.e.,

j
1/4
C () ) = 20 ()2/) ) ?

[

1 + 11 ()2/) ) + 12 ()2/) )2 + · + 1= ()2/) )= + · · ·
]

. (6)

In practice, it is vital to recast (6) into a formula with fewer parameters, e.g.,

j
1/4
C () ) = 20

()2/) ) ?
1 + 11 ()2/) ) + 12 ()2/) )2

. (7)

It turns out that the 6 data points of j
1/4
C at 0 ∼ 0.064 fm (V = 6.20) are well fitted by (7). Thus, for

the global fitting of all j
1/4
C (0, ) ) with different 0 and ) , the simplest extension of (7) is to replace

20 with (20 + 210
2). This leads to the ansatz

j
1/4
C (0, ) ) = (20 + 210

2) ()2/) ) ?
1 + 11 ()2/) ) + 12 ()2/) )2

, )2 = 150 MeV. (8)
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Fitting the 15 data points of j
1/4
C in Fig. 1 to (8), it gives 20 = 1.89(3), 21 = 32.2(6.8), ? = 2.03(5),

11 = −2.42(19), 12 = 6.25(14) with j2/d.o.f. = 0.21. Note that the fitting results are rather

insensitive to the choice of )2 = 150 MeV, i.e., any value of )2 in the range of 145-155 MeV gives

almost the same results. Then j
1/4
C () ) in the continuum limit can be obtained by setting 02

= 0 in

(8), which is plotted as the solid black line in Fig. 1, with the error bars as the enveloping blue solid

lines. In the limit ) ≫ )2, it becomes j
1/4
C () ) = 20 ()2/) )2.03(5) , i.e., jC () ) = 24

0
()2/) )8.1(2) ,

which agrees with the temperature dependence of jC () ) in the dilute instanton gas approximation

(DIGA) [34], i.e., jC () ) ∼ )−8.3 for # 5 = 4. This also implies that our data points of jC (0, ) ) (for

) > 350 MeV) are valid, up to an overall constant factor.

It is interesting to note that our 15 data points of jC (0, ) ) are only up to the temperature

) ∼ 515 MeV. Nevertheless, they are sufficient to fix the coefficents of (8), which in turn can give

jC () ) for any ) > )2. This is the major advantage of having an analytic formula like (8). There

are many possible variations of (8), e.g., replacing (20 + 210
2) by (20 + 210

2 + 220
4), adding the 02

term to the exponent ? and/or the coefficients 11 and 12, etc. For our 15 data points, all variations

give consistent results of jC () ) in the continuum limit.

4. Discussions

To summarize, this is the first determination of jC () ) in lattice QCD with # 5 = 2 + 1 + 1

optimal domain-wall quarks at the physical point, by direct simulations. Here the chiral symmetry

is preserved with #B = 16 in the fifth dimension, and the optimal weights {lB , B = 1, · · · , 16}
are computed with _<8= = 0.05 and _<0G = 6.2, and the error of the sign function of �F is

less than 1.2 × 10−5, for eigenvalues of �F satisfying _<8= ≤ |_(�F) | ≤ _<0G . However, it is

not in the exact chiral symmetry limit, the smallest eigenvalue of the effective 4D Dirac operator

� (<@) = (�2 + <@)/(1 + A�2) is larger than <@. Thus the fermion determinant is larger than

its value in the exact chiral symmetry limit. Now the question is how jC () ) depends on the chiral

symmetry in this study. For optimal domain-wall fermion, the exact chiral symmetry is in the limit

#B → ∞ and _<8= → 0. In practice, this can be attained by increasing #B and decreasing _<8= such

that the error due to the chiral symmetry breaking becomes negligible in any physical observables.

For example, if one takes #B = 32, _<8= = 10−4 and _<0G = 6.2, then the error of the sign function

of �F is less than 1.2×10−5 for eigenvalues of �F satisfying 10−4 ≤ |_(�F) | ≤ 6.2. Nevertheless,

this set of simulations is estimated to be ∼ 100 times more expensive than the present one, beyond

the limit of our present resources. At this point, one may wonder whether it is possible to use the

reweighting method to obtain jC (0, ) ) in the exact chiral symmetry limit, without performing new

simulations at all. However, according to our discussion of the reweighting method for DWF [35],

it is infeasible to apply the reweighting method to the jC (0, ) ) results in the present study, thus new

simulations with smaller _<8= and larger #B are required.
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