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1. Introduction

The potential between a static quark-antiquark pair + (A) is one of the most commonly studied quantities
in QCD. At small separations A the static potential can be calculated in a weak coupling expansion. The
perturbative expression of the static energy is known at N3LL accuracy and can be combined with high
precision measurements of the same quantity in lattice QCD. This allows an accurate extraction of the strong
coupling Us, which is competitive with lattice determinations from different observables [1].

In a lattice regularization, the static potential comes with a linear divergence of order Us (1/0)/0 (with
0 denoting the lattice spacing) also referred to as self-energy. The self-energy vanishes in dimensional
regularization. However, the perturbative expression for + (A) in dimensional regularization is affected by a
renormalon ambiguity of order ΛQCD [2, 3]. Both the renormalon and the self energy can be absorbed into
an additive constant. This constant disappears, when considering the static force � (A) = mA+ (A). The static
force encodes the shape of + (A) and carries all the physical information needed to extract Us, while being
finite and renormalon free.

A precise computation of the static force on the lattice can be challenging. While the traditional way of
computing the static force by taking finite differences of the static potential [4, 5] can be efficient in quenched
lattice QCD, the lattice data points for + (A) might be too sparse in full QCD for a reliable extraction of the
static force either via finite differences or via interpolation [6]. Such problems can be avoided by using a
recently suggested method [7, 8] based on Ref. [9]: The force between a static quark and a static antiquark
is computed directly from the expectation value of a Wilson loop with a chromoelectric field inserted in one
of the temporal Wilson lines.

In this paper we carry out a quenched lattice QCD computation of the static force using this new method.
We discuss, how to obtain the static force either from Wilson or Polyakov loops with chromoelectric field
insertions. Both approaches yield consistent results. The corresponding systematic errors are, however,
different. We also address the issue that the discretized chromoelectric field has a slow convergence towards
the continuum limit, unless a multiplicative renormalization factor is introduced.

This conference contribution is organized in the followingway: We introduce our observables in section 2
and the simulation setup in section 3. The renormalization of this definition of the static force is discussed
in section 4. Numerical results for the static force are presented in section 5. Further details can be found
in our recent publication [10]. Results obtained at an early stage of this project were discussed at a previous
edition of the lattice conference [11].

2. Observables and their discretizations

The force � (A) between a static quark and an antiquark is the derivative of the static potential + (A),

� (A) = mA+ (A). (1)

+ (A) is related to rectangular Wilson loops with large temporal extent ) and arbitrary spatial extent A ,

4−+ (A )) ∼ Tr{P,A×) } = Tr
{
P exp

(
86

∮
A×)

3G` �` (G)
)}
. (2)

On a lattice the Wilson loop,A×) is discretized by a product of link variables *` (G) = 4806�` (G) . The
static potential is typically extracted via

+ (A, 0) = lim
)→∞

+eff (A, ), 0) , +eff (A, ), 0) = −
1
0

ln
〈Tr{P,A×() +0) }〉
〈Tr{P,A×) }〉

. (3)

2



P
o
S
(
L
A
T
T
I
C
E
2
0
2
1
)
5
8
5

The static force from generalized Wilson loops Viljami Leino

The static force can the be obtained in a straightforward way from the static potential by using a discrete
derivative, e.g.

�m+ (A, 0) =
+ (A + 0, 0) −+ (A − 0, 0)

20
. (4)

Alternatively, one can compute the static force using a method proposed in Refs. [7, 8],

� (A) = lim
)→∞

−8 〈Tr{P,A×) r̂ · 6E(r, C∗)}〉
〈Tr{P,A×) }〉

. (5)

Here r̂ is the spatial direction of the separation of the static quark-antiquark pair and E(r, C∗) denotes the
chromoelectric field inserted on one of the temporal Wilson lines at a fixed time C∗. The chromoelectric field
components are defined as � 9 (G) = �90 (G) in terms of the non-Abelian field strength tensor. We note that
〈Tr{P,A×) 6� 9 (r, C∗)}〉 depends on C∗. This dependence, however, disappears in the limit ) → ∞, if C∗ is
kept constant.

The lattice formulation of the right hand side of Eq. (5) requires a discretized field insertion � 9 . We use
two different symmetric formulations, a so-called butterfly

Π 90 =
% 9 ,0 + %0,− 9

2
(6)

or a cloverleaf

Π 90 =
% 9 ,0 + %0,− 9 + %− 9 ,−0 + %−0, 9

4
(7)

of plaquettes %`,a = 1 + 8026�`a + O(04) = *` (G)*a (G + ˆ̀)*†` (G + â)*†a (G) [12]. In both cases the
chromoelectric field is given by

6� 9 =
Π 90 − Π†90

2802 + O(02). (8)

Moreover, it is convenient to define an effective force and to extract the static force via

�� (A, 0) = lim
)→∞

��,eff (A, ), 0) , ��,eff (A, ), 0) = −8
〈Tr{P,A×) r̂ · 6E(r, C∗)}〉

〈Tr{P,A×) }〉
. (9)

In the following we insert the chromoelectric field E(r, C∗) exclusively at C∗ = 0. While the continuum
formulation (5) is independent of C∗, the choice C∗ = 0maximizes the the distance to both temporal boundaries
of the Wilson loop and, thus, should lead to a stronger suppression of excitations and, consequently, to a
clearer signal. Furthermore, we improve the lattice results for the static force using perturbation theory at
tree-level. This is done by redefining the discrete lattice separations A in such a way that the right-hand-side of
Eq. (5) in lattice tree-level perturbation theory and in continuum tree-level perturbation theory are identical.

Instead of Wilson loops one can also consider correlation functions of Polyakov loops to compute the
static potential as well as the static force. A Polyakov loop is defined as the normalized trace of a closed
temporal Wilson line winding around the periodic temporal direction of extent ) ,

! (x) = 1
#2

Tr
{
P exp

(
86

∫ )

0
3C �0 (G)

)}
. (10)
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For the static force a Polyakov loop with a chromoelectric field insertion is needed,

!� (r) =
1
#2

Tr
{
P exp

(
86

∫ )

C∗
3C �0 (G)

)
r̂ · 6E(r, C∗)P exp

(
86

∫ C∗

0
3C �0 (G)

)}
. (11)

The analogue of Eq. (5) then reads

� (A) = lim
)→∞

−8 〈!
† (0)!� (r)〉
〈!† (0)! (r)〉

. (12)

3. Simulation setup

We discretize the SU(3) Yang-Mills theory using the standard Wilson plaquette action. We carried
out simulations with the multilevel algorithm [13], where we performed the updates using the heatbath and
overrelaxation algorithms. We generated three ensembles with lattice spacings 0 = 0.060 fm, 0 = 0.048 fm
and 0 = 0.040 fm, which we refer to as ensembles �, �, and �, respectively. The lattice spacing in units of
the scale A0 is related to the gauge coupling Vwith a parameterization from Ref. [4]. The full set of simulation
parameters for the ensembles �, �, and � can be found in Ref. [10].

To improve the ground state overlaps generated by the spatial Wilson lines in the Wilson loops, we use
APE smeared spatial links with UAPE = 0.5 and #APE = 50 smearing steps for the Wilson loops (for detailed
equations see e.g. Ref. [14]).

4. Renormalization

On the lattice the two definitions of the static force, �� (A, 0) and �m+ (A, 0) ((9) and (4), respectively),
lead to significantly different discretization errors. In other words, the convergence of these observables to
the continuum result is quite different. Such differences are expected, because it is known that observables
involving components of the field strength tensor often exhibit sizable discretization errors at values of
the gauge coupling typically used in numerical simulations. The reason is the slow convergence of lattice
perturbation theory, when expanded in the bare coupling [15]. To reduce discretization errors arising
from chromoelectric and chromomagnetic field insertions, one can use multiplicative renormalization or
improvement factors as discussed in Refs. [12, 16–19].

We define such a multiplicative improvement factor /E corresponding to a finite renormalization via

/E (0) =
�m+ (A∗, 0)
�� (A∗, 0)

, (13)

where A∗ is an arbitrary separation. After determining this renormalization factor /E (0) at a single arbitrary
separation A∗, it can be used to improve �� (A, 0) at all other separations according to

�ren
� (A, 0) = /E (0)�� (A, 0). (14)

�ren
�
(A, 0) should then have significantly smaller discretization errors than �� (A, 0) and, thus, is expected to

be quite close to both �m+ (A, 0) and the continuum result � (A). We note that /E (0) → 1 for 0 → 0.
In Fig. 1 we show the renormalization constant /E, defined in Eq. (13), as a function of A∗ for both

Wilson and Polyakov loops. The figure exhibits plateau regions that confirm the expected constant behavior
of /E. Also consistent with expectation is the dependence of /E on V. One can see that with decreasing
lattice spacing 0 the improvement factor /E slowly decreases towards 1.

We determine a numerical value for /E for each ensemble by fitting a constant to the lattice data points
shown in Fig. 1 in the range 0.35 A0 ≤ A∗ ≤ 0.65 A0. Results of these fits are collected in Table 1 for both
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Figure 1: /E = �m+ /�� as a function of A∗. The colored horizontal lines and error bands represent the fits to determine
a numerical value for /E for each ensemble. (left) Wilson loops. (right) Polyakov loops.

Wilson and Polyakov loops. There are small differences between the Wilson loop and the Polyakov loop
results, which might be due to different remaining systematic errors.

ensemble 0 in fm /E from Wilson loops /E from Polyakov loops
A 0.060 1.4068(63) 1.4001(20)
B 0.048 1.3853(30) 1.3776(10)
C 0.040 1.348(11) 1.3628(13)

Table 1: Renormalization constants /E obtained by fitting constants to �m+ /�� in the range 0.35 A0 ≤ A∗ ≤ 0.65 A0.

5. Numerical results for the static force

Now we consider �� (A)/�� (A∗), where �� is the non-renormalized static force defined in Eq. (9).
We choose a fixed separation A∗ = 0.48 A0 ≈ 0.24 fm such that A∗/0 is close to an integer for all three
ensembles. Corresponding numerical results for Wilson loops as well as for Polyakov loops are shown in
Fig. 2. For comparison, we also fit a Cornell ansatz +Cornell (A) = −U/A + fA to the static potential and plot
mA+Cornell (A)/mA+Cornell (A∗). The agreement of �� (A)/�� (A∗) and mA+Cornell (A)/mA+Cornell (A∗) constitutes a
numerical proof of concept for the method of computing the static force via a chromoelectric field insertion.

In summary, we tested a novel method to compute the static force � (A) from expectation values ofWilson
or Polyakov loops with chromoelectric field insertions. The numerical results exhibit sizable discretization
errors and the convergence to the continuum limit is rather slow, but this can be compensated by an A-
independent multiplicative renormalization factor /E. Concerning efficiency, our method appears to be
comparable to the traditional method of first computing the static potential and then taking the derivative,
as investigated and discussed in detail in our recent publication [10]. We note that the relation between the
force and the color electric field has also been used in recent work from other groups [20, 21] to determine
the string tension.

This exploratory computation of the static force is also an important preparatory step for future projects,
where similar correlation functions need to be computed. An example is the computation of 1/< and 1/<2

corrections (< denotes the heavy quark mass) to the ordinary static potential or to hybrid static potentials.
We conclude by noting that the renormalization discussed in section 4 might not be necessary anymore,
when using the gradient flow, as discussed during the conference talk. Due to page limitations we do not
discuss the gradient flow in the context of the static force in this proceedings contribution, but refer to the
forthcoming Ref. [22].
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Figure 2: Left: �� (A)/�� (A∗) as a function of A for A∗ = 0.48 A0 ≈ 0.24 fm obtained from Wilson loops (boxes) and
Polyakov loops (triangles). For comparison we also show mA+Cornell (A)/mA+Cornell (A∗).
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