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Lattice QCD plays an increasing role in reducing theoretical uncertainties in kaon decays. Here we
focus on kaon decay channels K → `ν``

′+`′−, which are closely related to radiative kaon decays
since the lepton pairs `′+`′− come from virtual photon emission: K → `ν`γ

∗ → `ν``
′+`′−.

Compared with real photon emission, these channels involve more complicated form factors due
to the off-shell photon with possible large momentum transfer, which causes a challenge to lattice-
QCD studies. In this work, we introduce a lattice calculation procedure for their decay width,
which can avoid parameterization of form factors. The systematic errors in our method are found
to be controllable. Infinite volume reconstruction method is adopted to remove the temporal
truncation effects and reduce finite volume effects from kaon intermediate state. This approach
sets up a bridge between lattice QCD calculation and experimental measurement of decay width.
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1. Introduction

Kaon decays provide an excellent place for high precision test of Standard Model [1]. For this
purpose, the theoretical uncertainties in long-distance contribution associated with non-perturbative
QCD need to be reduced. In recent years, lattice QCD plays an increasing role on this issue [2].
An important class is radiative corrections to the leptonic and semileptonic decays, which has
also been investigated on lattice recently [3–13]. In this work we consider the decay channels
K → `ν``

′+`′−, where the pair of leptons `′+`′− is produced by a virtual photon: K → `ν`γ
∗ →

`ν``
′+`′−. In experiments, three channels have been measured: K → eνee+e−, K → µνµe+e− and

K → eνeµ+µ− [14, 15].
Compared with real photon emission, these channels involve more complicated form factors

due to the off-shell photon [16]. Since the phase space of K → `ν``
′+`′− allows the virtual

photon carries relatively large momentum, understanding the momentum dependence of decay
amplitude is essential in calculation of the total decay width. This complexity brings difficulties to
the lattice-QCD calculation. First, parameterization of form factors for off-shell photon with large
momentum transfer is non-trivial. Second, the systematic errors such as finite volume effects or
temporal truncation effects, can be enhanced from light intermediate states. One example is that
the on-shell ππ intermediate states can cause power-law finite volume effects and exponentially
growing contamination in temporal direction.

In this work, we propose a calculation procedure forK → `ν``
′+`′− decaywidth and discuss the

systematic errors in our method. For numerical implementation, we refer to our recent paper [17].
The benefit of our method is to provide a smooth connection between the lattice hadronic matrix
element and the decay width without introducing specific parameterization of form factors. The
systematic errors from long-distance region, such as temporal truncation effects and finite volume
effects, are found to be controllable. We use infinite volume reconstruction (IVR) method [18]
to correct errors associated with kaon intermediate state. For ππ intermediate states, we give a
qualitative discussion and leave the precise treatment for future works.

2. Calculation Procedure

In this section, we introduce the calculation procedure for K → `ν``
′+`′− decay width. The

Euclidean space-time hadronic function Hµν
E (x,Q) in infinite volume is defined as:

Hµν
E (x,Q) =

〈
0
���T {

Jµem,E (x)J
ν
W,E (0)

}��� K(Q)
〉
. (1)

where Q = (imK, ®0) is the Euclidean 4-momentum of initial kaon state. The electromagnetic
and weak currents in Euclidean space are defined as Jµem,E =

2
3 ūγµu − 1

3 d̄γµd − 1
3 s̄γµs and

JνW,E = s̄γν (1 − γ5) u. It can be calculated from lattice three-point correlation function:

H(L),µν
E,A/V

(x,Q) =


N−1
K ZV ZA/V emK∆T

〈
Jµem(®x, t)JνA/V (

®0, 0)φ†K (−∆T)
〉
, t ≥ 0,

N−1
K ZV ZA/V emK (∆T−t)

〈
Jµ
A/V
(®0, 0)Jνem(®x, t)φ

†

K (t − ∆T)
〉
, t < 0.

(2)

where we add superscript (L) to emphasize that this quantity is defined in finite volume. The axial-
vector-current part and vector-current part are separated since they have different renormalization
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factor ZA and ZV . The normalization factor NK = 〈K |φ
†

K (0)|0〉/(2mK ) and the kaon mass mK are
calculated from the lattice two-point functions. ∆T is large enough for kaon states dominance.

Unlike traditional calculation at fixed lattice momenta, we use hadronic function in coordinate
space H(L),µνE (x,Q) as input. As shown in Fig. 1, we introduce a calculation procedure to provide a
direct connection between the lattice hadronic function and the decay width.

Figure 1: Lattice calculation procedure for K → `ν``
′+`′− decay width.

In the first step, we relate H(L),µνE (x,Q) to Minkowski hadronic function Hµν
M (p, q), which is

defined as:
Hµν

M (p, q) =
∫

d4x eipx
〈
0
���T {

Jµem,M (x)J
ν
W,M (0)

}��� K(q)
〉
. (3)

with Minkowski momenta p = (E, ®p), q = (mK, 0).
We first define hadronic function Hµν

E (P,Q) in infinite volume Euclidean space-time:

Hµν
E (P,Q) = −i

∫ T/2

−T/2
dt

∫
d3 ®x eEt−i ®p · ®xHµν

E (x,Q). (4)

where the kinematic variables are P = (iE, ®p) and Q = (imK, ®0). On lattice, Hµν
E (x,Q) is replaced

by the finite volume version H(L),µνE (x,Q):

H(L),µνE (P,Q) = −i
∫ T/2

−T/2
dt

∫
V

d3 ®x eEt−i ®p · ®xH(L),µνE (x,Q). (5)

The differences between H(L),µνE (P,Q) and Hµν
M (p, q) come from two aspects:

1. Temporal truncation effects. They account for differences between Eq. (3) and Eq. (4), which
are caused by non-equivalence between Euclidean space-time and Minkowski space-time.

2. Finite volume effects. They come from replacing infinite volume Hµν
E (x,Q) by finite volume

lattice data H(L),µνE (x,Q) in Eq. (5).

Both effects are found to be controllable through IVR method, which is discussed in Sec. 3 in
details.
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In the second step, the decay amplitudeM(K → `ν``
′+`′−) is constructed. As shown in Fig. 2

and Fig. 3, it includes two parts: radiation from quarks or from charged lepton [16]. From these
diagrams, the decay amplitude can be written as:

Figure 2: Contribution of off-shell photon radiation from the final-state lepton in K → `ν``
′+`′−.

Figure 3: Contribution of off-shell photon radiation from quarks in K → `ν``
+`−. The hadronic part is

described by Hµν
M (p, q).

iMD = −i
GFe2V∗us
√

2s12

[
fK Lµ (p1, p2, p3, p4) − Hµν

M (p12, q) lv (p3, p4)
] [

ū (p1) γµv (p2)
]
,

iME = +i
GFe2V∗us
√

2s14

[
fK Lµ (p1, p4, p3, p2) − Hµν

M (p14, q) lv (p3, p2)
] [

ū (p1) γµv (p4)
]
. (6)

whereMD andME correspond to “Direct” and “Exchange” diagrams in Fig. 3. pi with i = 1, · · · , 4
are defined as momenta of final-state leptons. si j = p2

i j = (pi + pj)
2 is the momentum square of

photon. The leptonic factors Lµ and lµ are defined as

lµ (p3, p4) = ū (p3) γ
µ (1 − γ5) v (p4) ,

Lµ (p1, p2, p3, p4) = lµ (p3, p4) + L ′µ(p1, p2, p3, p4), (7)

with

L ′µ (p1, p2, p3, p4) = m` ū (p3) (1 + γ5)
2pµ4 + /p12γ

µ

m2
`
− (p4 + p12)

2 v (p4) . (8)
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A convenient way to calculateMD andME is using numerical realization of the spinors and
calculating decay amplitude by matrix products.

In the final step, the decay width is given by four-body phase space integration. For ` = `′,
both “Direct” and “Exchange” diagrams contribute:

Br[K → `ν``
+`−] =

1
2mKΓK

∫
dΦ4

(
|MD |

2 + |ME |
2 + 2 Re[MDM

∗
E ]

)
. (9)

For ` , `′, we only need “Direct” diagram:

Br[K → `ν``
′+`′−] =

1
2mKΓK

∫
dΦ4 |MD |

2 , (10)

where ΓK is total decay width of kaon. In the practical calculation, we use Monte Carlo method to
do phase space integral. Details of four-body phase space as well as numerical implementation can
be found in our recent paper [17].

3. Temporal Truncation Effects and Finite Volume Effects

In this section, we discuss how to remove temporal truncation effects and reduce finite volume
effects. Both effects are dominated by low-lying states. Such states include K intermediate state for
t < 0 time ordering and ππ intermediate state for t > 0 time ordering, as shown in Fig. 4 and Fig. 5.

Figure 4: Low-lying-state dominance for t > 0: ππ or ρ states.

Figure 5: Low-lying-state dominance for t < 0: kaon states.

IVR method utilizes low-lying-state dominance to reconstruct Hµν
E (P,Q) from H(L),µνE (P,Q).

As shown in Fig. (6), two steps are included in IVR method: reconstruction in temporal direction
(denoted as IVR) and reconstruction in spatial direction (denoted as δIVR). These two steps
correspond to solution of temporal truncation effects and finite volume effects respectively.

5
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Figure 6: The main idea of IVR method.

We first discuss temporal truncation effects. For t > 0 and t < 0 time-ordering, such effects
appear as unphysical terms e−(Eππ−E)T/2 and e−(E+EK−mK )T/2 respectively. For kaon intermediate
state, if the photon is soft and the intermediate kaon is nearly on-shell, E + EK − mK → 0 will
enhance the unphysical term. In relative small lattice Ta/2 = La = 2.2 f m, we actually find these
effects can not be ignored in the whole phase space [17].

This unphysical term is removed by reconstruction in temporal direction. We introduce inte-
gration truncation |t | = ts in temporal direction, where ts is large enough for kaon state dominance.
For |t | > ts, the contribution can be reconstruct from time slice |t | = ts:∫ 0

−∞

dt
∫

d3 ®x eEt−i ®p · ®xHµν(®x, t)

=

∫ 0

−ts

dt
∫

d3 ®x eEt−i ®p · ®xHµν(®x, t) +
∫ −ts

−∞

dt
∫

d3 ®x eEt−i ®p · ®xHµν(®x, t)

=

∫ 0

−ts

dt
∫

d3 ®x eEt−i ®p · ®xHµν(®x, t) +
∫

d3 ®x e−i ®p · ®xHµν(®x,−ts)
e−Ets

E + EK − mK
. (11)

From the second to the third line, the hadronic function Hµν(®x, t) with t < −ts is reconstructed
by kaon state dominance. Using the hadronic function at some modest value of ts, it allows us to
perform the temporal integral in the whole region of −∞ < t < −ts. Thus the temporal truncation
effects naturally disappear.

For ππ states, the unphysical term is e−(Eππ−E)T/2. If Eππ < mK , such states will lead to
exponentially growing term. These effects are suppressed by small phase space allowed on-shell
two pion K → `ν`ππ → `ν``

′+`′−. The correction of this part can be done by reconstruction of
low-lying ππ state contribution with Eππ < mK . The treatment of this part will be include in our
future work.

Next, we turn to finite volume effects δIVR. Due to the cluster decomposition property of
QCD, Hµν(x,Q) at long-distance is exponentially suppressed as e−ΛL with hadronic scale Λ. Thus,

6
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in calculation of decay width, δIVR is also exponentially suppressed. They can either be corrected
by low-lying state, or be reduced by increasing lattice volume.

We still start with kaon state. Reconstruction in spatial direction is done by:

Hµν
E (P,Q) =

∫
d4x eEt−i ®p · ®xHµν

E (x,Q)

=

∫
V

d4x eEt−i ®p · ®xH(L),µνE (x,Q)

+

∫
V

d4x eEt−i ®p · ®x
(
Hµν
E (x,Q) − H(L),µνE (x,Q)

)
+

∫
>V

d4x eEt−i ®p · ®xHµν
E (x,Q). (12)

where the third line comes from the difference between Hµν
E (x,Q) and H(L),µνE (x,Q) inside the

lattice box, and the fourth line is contribution from Hµν
E (x,Q) outside the lattice box. We denote

them as δIVR,K , which can be calculated using low-lying-state dominance of kaon

δIVR,K ≈

∫
V

d3 ®x eEt−i ®p · ®x(H(L∞),µνK (x,Q)−H(L),µνK (x,Q))+
∫
>V

d3 ®x eEt−i ®p · ®xH(L∞),µνK (x,Q), (13)

where we define L∞ as a much larger lattice volume. The kaon contribution H(L),µνK (x,Q) can be
calculated analytically with kaon electromagnetic form factor F(K)(q2) = 1 + (r2

K/6)q
2:

H(L),µνK (x,Q) =
1
L3

∑
®p

1
2E

fKPν(P +Q)µF(K)(q2)e−i ®p · ®xe(E−mK )t . (14)

As shown in Fig. 7, δIVR,K is exponentially suppressed in calculation of decay width.

Figure 7: Examination of volume dependence of finite volume effects δIVR,K using K → eνee+e− decay as
an example.

7



P
o
S
(
L
A
T
T
I
C
E
2
0
2
1
)
6
0
4

Approach to K → `ν``
′+`′− decay width on lattice Xin-Yu Tuo

Next, we analyze the ππ intermediate states. There are two sources of finite volume effects.
The first one is the power-law finite volume effects from on-shell ππ state. These effects are also
suppressed by small phase space K → `ν`ππ → `ν``

′+`′−. The second one is the exponentially
suppressed finite volume effects δIVR,ππ , which is similar to kaon case. The correction formulas
for both parts will be derived in our future work.

4. Conclusion

This paper presents a methodology for computing the K → `ν``
′+`′− decay width using lattice

QCD. The calculation procedure is shown in Fig. 1, which uses coordinate space hadronic function
as input and does not depend on parameterization of form factors. This approach sets up a bridge
between lattice data and experimental observables. For numerical implementation, we refer to our
recent paper [17].

The systematic errors, including temporal truncation effects and finite volume effects, are found
to be controllable in this approach. They are all long-distance effects and are dominated by low-
lying states. We adopt IVR method to solve the systematic errors associated with kaon intermediate
state. The situation for ππ intermediate state are qualitatively analyzed in this work. The treatment
of this part, as well as the other systematic effects, are left for future investigations.
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