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1. Introduction

Tensor network methods are playing an increasingly important role in lattice gauge theory. The
annual lattice conferences certainly helped fostering contacts between the communities involved
in the early developments [1–7]. The number of contributions has grown steadily with the years.
In 2021, the keyword “tensor network" appears 24 times in the book of abstracts and the keyword
“tensor renormalization" 12 times.

The tensor network approaches can be divided roughly into two categories. The first one relies
on Hamiltonian formulations and often makes use of powerful computational tools developed in
the condensed matter community, such as the Matrix Product States (MPS) in 1+1 dimensions and
higher-dimensional extensions such as Projected Entangled Pair States (PEPS). For recent general
reviews see [8, 9]; for reviews focused on lattice gauge theory see [10, 11]; for recent use of
PEPS in gauge theories see [12]. For Hamiltonian formulations of non-Abelian gauge theories at
this conference, see [13]. For Hamiltonian studies of the Abelian Higgs and 𝑂 (2) models at this
conference see [14, 15].

The other category of approaches is based on the conventional Lagrangian lattice formulation
and relies on various types of dualities and character expansions. It is sometimes called Tensor
Lattice Field Theory (TLFT). For recent reviews that provide a roadmap resembling the one followed
by standard review articles [16, 17] on lattice gauge theory (the “Kogut sequence") see [18, 19].
When the field variables are continuous and compact, character expansions provide discrete indices
that fit naturally the needs of quantum computing. This is the main theme of these proceedings.

TLFT provides reformulations that are exactly equivalent to the original lattice models. One
of the original motivations for this approach was the possibility of doing local coarse-graining
[18, 20, 21]. This involves approximations (“truncations") that can be checked in regimes where
the usual Monte Carlo sampling in configuration space is possible. This is often called the Tensor
Renormalization Group (TRG). For examples in this conference see for instance [22–26]. Another
possibility is to sample the tensor configurations appearing in the reformulations as in the worm
algorithm [7, 27–31]. These approaches are completely Lagrangian based. However, it is possible to
connect with the Hamiltonian approach by using the transfer matrix and taking the time-continuum
limit [8, 18, 19, 30].

Basic aspects of TLFT are reviewed in Sec. 2. Because of the equivalence with the standard
formulation, symmetries of the action lead to known identities or theorems which need to be
recast in the new formulation. In particular, local gauge invariance is manifest at every step of
the reformulation. In addition, truncations preserve symmetries [32, 33]. These questions and
economical implementation of Gauss’s laws are briefly discussed in Sec. 3. The simple case of the
Abelian Higgs model in 1+1 dimension and a possible implementation with Rydberg-dressed atoms
in optical lattice [34, 35] are reviewed in Sec. 4. This inspired proposals to implement the same
model with configurable arrays of Rydberg atoms [36, 37] which were presented at the conference.
This is discussed in Sec. 5. More details can be found in a recent publication [38]. Finally, related
results presented at this conference [14, 15, 26, 39] are briefly summarized in Sec. 6.



P
o
S
(
L
A
T
T
I
C
E
2
0
2
1
)
6
0
8

From tensors to qubits Yannick Meurice

2. Tensor Lattice Field Theory for Quantum Computing

Quantum computing for quantum field theory requires a complete discretization. Discretization
of space is well understood from the success of lattice QCD. Discretization of field integration for
continuous field variables can be achieved with various methods. In most lattice simulations, the
variables of integration are compact and tensor formulations use character expansions (such as
Fourier series) to re-express the partition function as discrete sums of contracted tensors. The
“hard" integrals are done exactly and field integrations provide Kronecker deltas that encode the
symmetries. For continuous field variables, the sums are infinite, but truncations to finite sums do
not break symmetries [32, 33]. Our general expectation is that the correct large distance physics
can be obtained with “a few qubits per unit cells". Comparison with other methods based on field
discretization or quantum links are highly desirable [31, 40–42].

As a simple illustration of the discrete reformulation, we consider the lattice non-linear 𝑂 (2)
model. Its partition function reads:

𝑍𝑂 (2) =
∏
𝑥

∫ 𝜋

−𝜋

𝑑𝜑𝑥

2𝜋
𝑒
𝛽

∑
𝑥,`

cos(𝜑𝑥+ ˆ̀−𝜑𝑥 )
. (1)

Using the character expansion, which in this case amounts to a Fourier series, we expand the
Boltzmann weights as

𝑒𝛽 cos(𝜑𝑥+ ˆ̀−𝜑𝑥 ) =
∞∑︁

𝑛𝑥,`=−∞
𝑒𝑖𝑛𝑥,` (𝜑𝑥+ ˆ̀−𝜑𝑥 ) 𝐼𝑛𝑥,`

(𝛽), (2)

and obtain
𝑍𝑂 (2) = Tr

∏
𝑥

𝑇
(𝑥)
𝑛𝑥−1̂,1,𝑛𝑥,1,...,𝑛𝑥,𝐷

. (3)

with a local tensor 𝑇 (𝑥) with 2𝐷 indices. The explicit form is

𝑇
(𝑥)
𝑛𝑥−1̂,1,𝑛𝑥,1,...,𝑛𝑥−�̂�,𝐷 ,𝑛𝑥,𝐷

=
√︃
𝐼𝑛𝑥−1̂,1

𝐼𝑛𝑥,1 , . . . , 𝐼𝑛𝑥−�̂�,𝐷
𝐼𝑛𝑥,𝐷

× 𝛿𝑛𝑥,out,𝑛𝑥,in , (4)

Schematically, we replace integrations over circles located at the sites by discrete sums over indices
located on links: ∏

𝑥

∫ 𝜋

−𝜋
𝑑𝜑𝑥 =⇒

∑︁
{𝑛}

(5)

This can be ilustrated graphically for 𝐷 = 2 as:
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3. Truncations, symmetries and Gauss’s law

Tensorial truncations are compatible with the general identities derived from global and local
symmetries [32, 33]. Symmetries are encoded in tensor selection rules and not in the numerical
values of the tensor elements. Universal properties of these models can be reproduced with highly
simplified formulations desirable for implementations with quantum computers or for quantum
simulations experiments ("few qubits per unit cells"). In tensorial reformulations Noether theorem
can be stated as: for each symmetry there is a corresponding tensor redundancy (and we can
"fix" the corresponding integration variable). This applies not only to continuous but also discrete
symmetries. Note however, that truncations may affect the type of phase transitions [14, 15, 43].

Noise robust enforcement of Gauss’s law is easy for bosonic matter. For the Abelian Higgs
model, the gauge quantum numbers determine the matter quantum numbers completely. This is a
discrete version of 𝜕 𝑗𝐸 𝑗 = 𝜌. In the pure gauge case, one can associate new quantum numbers with
the space-space plaquettes [33] in a discrete version of 𝐸 𝑘 = 𝜕 𝑗𝐶

𝑗𝑘 . See also [44–47] for related
discussions.

4. Optical lattice implementation of the Abelian Higgs model

One of the simplest non-trivial gauge theories is the Abelian Higgs model. See [34] for the
TLFT formulation. After decoupling the Higgs model and taking the time-continuum limit in
1+1 dimensions, we obtain an Hamiltonian that can be implemented on an optical lattice [35] as
illustrated in the figure below for a spin-2 approximation.

𝐻 =
𝑈

2

∑︁
𝑖

(
𝐿𝑧

(𝑖)

)2
+ 𝑌

2

∑︁
𝑖

(𝐿𝑧

(𝑖) − 𝐿𝑧

(𝑖+1) )
2 − 𝑋

∑︁
𝑖

𝑈𝑥
(𝑖) . (6)

The color coded explanations [19] for an optical lattice ladder with one atom per rung are: tunneling
along the vertical direction (�̄�𝑧 = ±2, ±1, 0, green), no tunneling in the the horizontal direction
but short range attractive (Rydberg-dressed) interactions (blue). A parabolic potential is applied in
the spin (vertical) direction (red). See [34, 35] for details.

3
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5. Rydberg atom simulators

Arrays of 87𝑅𝑏 atoms separated by adjustable distances, homogeneously coupled to the excited
Rydberg state |𝑟⟩ with detuning Δ [36] offer new possibilities for quantum simulations [48–50].
Each atom has 2 states: |𝑔⟩, the ground state, and |𝑟⟩ the Rydberg state. We use 𝑛 to denote the
occupation of |𝑟⟩; in the “qubit" picture: |𝑔⟩ → |0⟩ and |𝑟⟩ → |1⟩. The Hamiltonian reads

𝐻 =
Ω

2

∑︁
𝑖

( |𝑔𝑖⟩ ⟨𝑟𝑖 | + |𝑟𝑖⟩ ⟨𝑔𝑖 |) − Δ
∑︁
𝑖

𝑛𝑖 +
∑︁
𝑖< 𝑗

Ω𝑅6
𝑏/𝑅

6
𝑖 𝑗𝑛𝑖𝑛 𝑗 , (7)

with 𝑖 and 𝑗 run over atoms in configurable arrays.
We will make use of the Rydberg blockade which means that |𝑟𝑟⟩ is suppressed if two atoms

are too close. Programming means assembling atom arrays with tweezers. This setup was used to
identify a rich phase diagram in the (distance between atoms, Δ/Ω) plane [37].

We now turn to proposals for spin-2 and spin-1 truncations presented at the conference and
discussed in more details in [38]. A simple adaptation of the spin-2 optical lattice construction of
Sec. 4 is illustrated below. As discussed below, the 𝑋 term can be induced by the Ω interactions.

m = 2

|r
|g
|g
|g
|g

m = 1

|g
|r
|g
|g
|g

m = 0

|g
|g
|r
|g
|g

m = -1

|g
|g
|g
|r
|g

m = -2

|g
|g
|g
|g
|r

|rgggg |grggg |ggrgg |gggrg |ggggr

In view of the currently available technology, we suggested to start with a simpler construction
for spin-1:

|r

|g

|g

|g

|r

|g

|g

|g

|r

|grg

m = 0
|rgg

m = 1
|ggr

m = 1

Each set of three atoms can be seen as a qutrit (for motivations see [51, 52]). The 𝑋-term (tunneling
in the optical lattice formulation) is induced by transitions to heavy states at second order in
perturbation theory [38].

4
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An even more economical version with only two atoms per links is given below:

|r

|g

|g

|g

|g

|r

|gg

m = 0
|rg

m = 1
|gr

m = 1

For the one spin system we can compare the simulator with the target model for spin-1:

𝐻 =
𝑈

2
(𝐿𝑧)2 − 𝑋𝑈𝑥 . (8)

𝐻 is invariant under charge conjugation: we use C eigenstates

|±⟩ ≡ 1
√

2
( |1⟩ ± |−1⟩). (9)

C |±⟩ = ± |±⟩ . (10)

They are also eigenstates of (𝐿𝑧)2 with eigenvalue 1, and C |0⟩ = |0⟩. There is only one C-odd
state which is |−⟩.

𝑈𝑥 |−⟩ = 0; 𝐻 |−⟩ = 𝑈

2
|−⟩ . (11)

The two atom setup discussed above provides a very simple implementation of the one-spin
system. Its Hamiltonian reads

𝐻2𝑅 = − Δ(𝑛+1 + 𝑛−1) +𝑉0𝑛+1𝑛−1

+ Ω

2

∑︁
±1

( |𝑔±1⟩ ⟨𝑟±1 | + |𝑟±1⟩ ⟨𝑔±1 |).

The correspondence between the states of the simulator and the target is given below:

state ket target energy (Ω = 0)
•
◦ |𝑟𝑔⟩ |1⟩ −Δ

◦
◦ |𝑔𝑔⟩ |0⟩ 0

◦
• |𝑔𝑟⟩ |−1⟩ −Δ

•
• |𝑟𝑟⟩ - −2Δ +𝑉0

5
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The matching between the target and the two-atom simulator is simply Δ = −𝑈
2 and Ω = −𝑋 .

Except for possible transitions to |𝑟𝑟⟩, the correspondence is exact and the linear formula applies for
arbitrary values of 𝑋 . A comparison between the target and the simulator is given in Fig. 1. More
details for setups with 3 (the other spin-1 proposal), and 4 or 6 atoms with spin-spin interactions
can be found in [38].

Figure 1: | ⟨𝑚 |𝑈 (𝑡) |𝑚 = 1⟩ |2, one site with exact Hamiltonian 𝑈 = 1, 𝑋 = 0.5 (solid lines) and Rydberg
Hamiltonian with Ω = −0.5, Δ = −0.5 and 𝑉0 = 64|Ω| = 32 (empty symbols) as in [38].

6. Related results

In this section, we give a brief summary of related results presented at this conference.

6.1 Phase shifts from real time evolution

The quantum Ising model provides a nice connection between the TLFT formulation of the
Ising model and quantum computing. In [39], methods to construct wavepackets and measure
phase shifts using IBMQ and trapped ions facilities [53] were presented. A renormalized reflection
probability that can be measured in the early stages of a collision led to estimates of a time delay
related to the phase shift by the Wigner formula:

Δ𝑡★ = 𝛿′(𝑘)/(𝜕𝐸/𝜕𝑘). (12)

6.2 Critical behavior of Spin truncations in the 𝑂 (2) limit

In [14, 15], the effect of truncations on the critical behavior were discussed for the 𝑂 (2) model
and the Abelian Higgs model. For instance [43], in the case of the charge representation of the
𝑂 (2) model

�̂�𝑐ℎ𝑎𝑟𝑔𝑒 =
𝑌

2

𝐿+1∑︁
𝑙=1

(𝑆𝑧
𝑙
)2 − 𝑋

2

𝐿∑︁
𝑖=1

(�̂�+
𝑙 �̂�

−
𝑙+1 + �̂�−

𝑙 �̂�
+
𝑙+1), (13)

energy gaps Δ𝐸𝑉=∞ for spin truncations 𝑆 = 1, 2, 3, 4 were considered. For 𝑆 ≥ 2 a behavior
of the type 𝐴 exp(−𝑏/

√
𝑌 − 𝑌𝑐) as in regular Kosterlitz Thouless (KT) was found to be accurate.

However for 𝑆 = 1, the parametrization 𝐴
√
𝑌 − 𝑌𝑐 exp [−𝑏/(𝑌 − 𝑌𝑐)] which corresponds to a 𝑆𝑈 (2)

symmetry on the KT separatrix was found to be more accurate.

6
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6.3 Interpolation among 𝑍𝑞 clock models

In [26, 54] a 𝑂 (2) model with symmetry breaking :

Δ𝑆 = 𝛾
∑︁
𝑥

cos(𝑞𝜑𝑥), (14)

was considered. In the limit of large 𝛾, the angles 𝜑 = 2𝜋𝑘
𝑞

𝑘 = 0, 1, .., ⌊𝑞⌋ are strongly favored.
The study of the symmetry breaking in tensor language is quite interesting and give accurate results
at small 𝛽. For integer 𝑞, we have a 𝑍𝑞 symmetry but for non-integer 𝑞 there is only a 𝑍2 symmetry.
The schematic phase diagram from [54] is shown below. The finite 𝛾 region remains to be explored
and could be related to the Rydberg arrays phase diagram in [37].

β?
2 3 4 5 6q

γ
γ = 0

γ = ∞

7. Conclusions

Tensor Lattice Field Theory is a generic tool to discretize path integral formulations of lattice
models. For gauge theories, the reformulation can be obtained by a complete integration over the
gauge configurations and is manifestly gauge-invariant. Microscopic truncations respect symme-
tries and have interesting critical properties. Noether theorem can be re-expressed for any kind
(continuous, discrete or finite) Abelian symmetry group: for each symmetry, there is a correspond-
ing tensor redundancy. Noise-robust economical implementation of Gauss’s law for pure gauge
models. Rydberg atom implementations of scalar QED are expected in the near future. The tensor
formulation provides a space-time picture that makes clear the building blocks of the quantum
algorithms and suggest ways to implement them with NISQ devices.

Acknowledgements: This research was supported in part by the Dept. of Energy under Award
Numbers DE-SC0010113 and DE-SC0019139.
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