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We investigate the Dirac eigenvalue spectrum (𝜌(𝜆, 𝑚𝑙)) to study the microscopic origin of axial
anomaly in high temperature phase of QCD. We propose novel relations between the derivatives
(𝜕𝑛𝜌(𝜆, 𝑚𝑙)/𝜕𝑚𝑛

𝑙
) of the Dirac eigenvalue spectrum with respect to the quark mass (𝑚𝑙) and the

(𝑛+1)-point correlations among the eigenvalues (𝜆) of the massless Dirac operator. Based on these
relations, we present lattice QCD results for 𝜕𝑛𝜌(𝜆, 𝑚𝑙)/𝜕𝑚𝑛

𝑙
(𝑛 = 1, 2, 3) with 𝑚𝑙 corresponding

to pion masses 𝑚𝜋 = 160 − 55 MeV, and at a temperature of about 1.6 times the chiral phase
transition temperature. Calculations were carried out using (2+1)-flavors of highly improved
staggered quarks and the tree-level Symanzik gauge action with the physical strange quark mass,
three lattice spacings 𝑎 = 0.12, 0.08, 0.06 fm, and lattices having aspect ratios 4 − 9. We find that
𝜌(𝜆 → 0, 𝑚𝑙) develops a peaked structure. This peaked structure, which arises due to non-Poisson
correlations within the infrared part of the Dirac eigenvalue spectrum, becomes sharper as 𝑎 → 0,
and its amplitude is proportional to 𝑚2

𝑙
. After continuum and chiral extrapolations, we find that the

axial anomaly remains manifested in two-point correlation functions of scalar and pseudo-scalar
mesons in the chiral limit. We demonstrate that the behavior of 𝜌(𝜆 → 0, 𝑚𝑙) is responsible for it.
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1. Introduction

The Lagrangian of the (2+1)-flavor Quantum Chromodynamics (QCD) has a global symmetry
𝑆𝑈 (2)L × 𝑆𝑈 (2)R × 𝑈 (1)A × 𝑈 (1)𝑉 in the classic limit and the chiral limit of 𝑚𝑙 → 0. The
𝑆𝑈 (2)L×𝑆𝑈 (2)R chiral symmetry is spontaneously broken in the vacuum and the𝑈 (1)A symmetry
is anomalously broken on the quantum level due to the Adler-Bell-Jackiw or chiral anomaly. For the
physical 𝑚𝑙 lattice simulations have established quite firmly that QCD transition is a rapid cross over
at a pesudocritical temperature at 𝑇 ≃ 156 MeV [1–3], while in the chiral limit 𝑚𝑙 → 0 chiral phase
transition temperature at which the 𝑆𝑈 (2)L × 𝑆𝑈 (2)R is restored is estimated as 𝑇𝑐 = 132+3

−6 MeV
based on the O(4) scaling analyses [4].

Conversely, the fate of the 𝑈 (1)A symmetry in the high temperature phase of QCD remains
unclear. Although the quantum anomaly is present at any finite temperature, at some point its
effects could become negligible due to the asymptotic restoration of the 𝑈 (1)A symmetry with
the temperature, thus the 𝑈 (1)A symmetry would be effectively restored. The order of the chiral
transition and the associated universality class is known to depend crucially on how axial anomaly
manifests itself in the two-point correlation functions of light scalar and pseudoscalar mesons
for 𝑇 ≥ 𝑇𝑐. If the isotriplet scalar 𝛿 and the isotriplet pseudoscalar 𝜋 remain non-degenerate at
𝑇 ≥ 𝑇𝑐, then we expect a second order phase transition which belongs to the three-dimensional𝑂 (4)
universality class [5]. But if the 𝛿 and 𝜋 become degenerate at𝑇 ≥ 𝑇𝑐, then the chiral phase transition
can be either first [5] or second order with the symmetry breaking pattern𝑈 (2)𝑉 ×𝑈 (2)𝐴 → 𝑈 (2)𝑉
universality class [6, 7]. For the physical 𝑚𝑙, the 𝛿 and 𝜋 remain nondegenerate around the chiral
crossover [2, 8, 9]. However, what happens for 𝑇 ≃ 𝑇𝑐 as 𝑚𝑙 → 0 remains an open question [10–13]
due to the lack of state-of-the-art lattice QCD calculations with controlled continuum and chiral
extrapolations.

To gain more insight about the microscopic origin of the axial anomaly we can investigate the
Dirac eigenvalue spectrum 𝜌(𝜆, 𝑚𝑙). It has been shown that if 𝜌(𝜆, 𝑚𝑙) is an analytic function of
𝑚2

𝑙
and 𝜆 then in the chiral limit 𝑈 (1)A breaking effects are invisible in differences of up to 6-point

correlation functions of 𝜋 and 𝛿 that can be connected via a𝑈 (1)A rotation [14]. However, the dilute
instanton gas approximation (DIGA) [15] predicated that 𝜌 ∼ 𝑚2

𝑙
𝛿(𝜆) can lead to nondegeneracy

of the two-point 𝜋 and 𝛿 correlation functions even as 𝑚𝑙 → 0 [16–18]. Some lattice QCD studies
have observed infrared enhancement in 𝜌 [8, 11, 16], however, whether such enhancements scale
as 𝑚2

𝑙
as 𝑚𝑙 → 0 have not been demonstrated. In other lattice QCD calculations, no infrared

enhancement in 𝜌 was observed [12, 19, 20], showing the importance of controlling lattice artifacts
through continuum extrapolations. On the other hand, in Ref. [21] it was argued that if 𝜋 and 𝛿

were to remain nondegenerate at 𝑇 ≥ 𝑇𝑐, then chiral symmetry restoration demands non-Poisson
correlations among the infrared eigenvalues.

In this work we propose the novel relation between 𝜕𝑛𝜌/𝜕𝑚𝑛
𝑙

and correlation among the
eigenvalues to investigate the microscopic origin of axial anomaly at high temperature phase. The
rest of paper is organized as follows. We describe the basic idea of how to obtain the relation
between 𝜕𝑛𝜌/𝜕𝑚𝑛

𝑙
and correlation among the eigenvalues in section 2. In section 3 we show the

setup of our lattice simulations. We then show our numerical results in Section 4. Finally we
present our conclusion in Section 5. The detailed information about this work can be found in [22].
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2. 𝜕𝑛𝜌/𝜕𝑚𝑛
𝑙

&𝐶𝑛+1 and 𝑈 (1)𝐴 anomaly

For (2+1)-flavor QCD, the Dirac eigenvalue spectrum is given by

𝜌(𝜆, 𝑚𝑙) =
𝑇

𝑉𝑍 [U]

∫
D[U]𝑒−𝑆𝐺 [U] det

[
/𝐷 [U] + 𝑚𝑠

] (
det

[
/𝐷 [U] + 𝑚𝑙

] )2
𝜌𝑈 (𝜆) . (1)

Here 𝜌𝑈 (𝜆) is the Dirac eigenvalue spectrum for a given gauge configuration, It is defined as
𝜌𝑈 (𝜆) = ∑

𝑗 𝛿(𝜆−𝜆 𝑗), 𝜆 𝑗 are the eigenvalues of the massless Dirac matrix /𝐷 [U]. Note that 𝜌𝑈 (𝜆)
does not explicitly depend on 𝑚𝑙 and the 𝑚𝑙 dependence is embedded in the determinant term.
Furthermore,

det
[
/𝐷 [U] + 𝑚𝑙

]
=

∏
𝑗

(
+i𝜆 𝑗 + 𝑚𝑙

) (
−i𝜆 𝑗 + 𝑚𝑙

)
= exp

(∫ ∞

0
d𝜆 𝜌𝑈 (𝜆) ln

[
𝜆2 + 𝑚2

𝑙

] )
. (2)

Substituting Eq. 2 in Eq. 1 and 𝑍 [U] it is straightforward to obtain 𝜕𝑛𝜌/𝜕𝑚𝑛
𝑙

[22], e.g.,

𝑉

𝑇

𝜕𝜌

𝜕𝑚𝑙

=

∫ ∞

0
d𝜆2

4𝑚𝑙 𝐶2(𝜆, 𝜆2;𝑚𝑙)
𝜆2

2 + 𝑚2
𝑙

, (3)

𝑉

𝑇

𝜕2𝜌

𝜕𝑚2
𝑙

=

∫ ∞

0
d𝜆2

4(𝜆2
2 − 𝑚2

𝑙
) 𝐶2(𝜆, 𝜆2;𝑚𝑙)(

𝜆2
2 + 𝑚2

𝑙

)2 +
∫ ∞

0
𝑑𝜆3

∫ ∞

0
𝑑𝜆2

(4𝑚𝑙)2 𝐶3(𝜆, 𝜆2, 𝜆3;𝑚𝑙)(
𝜆2

2 + 𝑚2
𝑙

) (
𝜆2

3 + 𝑚2
𝑙

) , (4)

with 𝐶𝑛 (𝜆1, · · · , 𝜆𝑛;𝑚𝑙) =
〈

𝑛∏
𝑖=1

[𝜌𝑈 (𝜆𝑖) − ⟨𝜌𝑈 (𝜆𝑖)⟩]
〉
. (5)

The difference of the integrated two-point functions in the pion and delta channel is defined as

𝜒𝜋 − 𝜒𝛿 =

∫
d4𝑥

〈
𝜋𝑖 (𝑥)𝜋𝑖 (0) − 𝛿𝑖 (𝑥)𝛿𝑖 (0)

〉
. (6)

For 𝑇 ≥ 𝑇𝑐 owing to the degeneracy of 𝜋 and the 𝜎 in the chiral limit [16]

𝜒𝜋 − 𝜒𝛿 = 𝜒disc , (7)

where 𝜒disc is the quark-line disconnected part of the isosinglet scalar meson susceptibility,

𝜒disc =
𝑇

𝑉

∫
d4𝑥

〈[
𝜓̄(𝑥)𝜓(𝑥) −

〈
𝜓̄(𝑥)𝜓(𝑥)

〉]2
〉
. (8)

The U(1)A symmetry-breaking measures 𝜒𝜋 − 𝜒𝛿 and 𝜒disc are related to 𝜌 through [16, 22]

𝜒𝜋 − 𝜒𝛿 =

∫ ∞

0
d𝜆

8𝑚2
𝑙
𝜌(

𝜆2 + 𝑚2
𝑙

)2 , 𝜒disc =

∫ ∞

0
d𝜆

4𝑚𝑙 𝜕𝜌/𝜕𝑚𝑙

𝜆2 + 𝑚2
𝑙

. (9)

In the Poisson limit, 𝐶Po
𝑛 (𝜆1, · · · , 𝜆𝑛) = 𝛿(𝜆1 − 𝜆2) · · · 𝛿(𝜆𝑛 − 𝜆𝑛−1) ⟨(𝜌𝑈 (𝜆1) − ⟨𝜌𝑈 (𝜆1)⟩)𝑛⟩ =

𝛿(𝜆1−𝜆2) · · · 𝛿(𝜆𝑛−𝜆𝑛−1) ⟨𝜌𝑈 (𝜆1)⟩+O(1/𝑁), where 2𝑁 ∝ 𝑉/𝑇 is the total number of eigenvalues.
In this limit the first and second order quark mass derivatives of 𝜌 are expressed as follows(

𝜕𝜌

𝜕𝑚𝑙

)Po
=

4𝑚𝑙𝜌

𝜆2 + 𝑚2
𝑙

− 𝑉𝜌

𝑇𝑁

〈
𝜓̄𝜓

〉
, (10)(

𝜕2𝜌

𝜕𝑚2
𝑙

)Po

=
4𝜌

𝜆2 + 𝑚2
𝑙

+
8𝑚2

𝑙
𝜌(

𝜆2 + 𝑚2
𝑙

)2 + 2𝑉2𝜌

𝑇2𝑁2

〈
𝜓̄𝜓

〉2 − 𝑉𝜌

𝑇𝑁

(
8𝑚𝑙

〈
𝜓̄𝜓

〉
𝜆2 + 𝑚2

𝑙

+ 2𝜒𝜋 − 𝜒𝛿

)
, (11)
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In the chiral limit, this leads to 𝜒Po
disc = 2(𝜒𝜋 − 𝜒𝛿), in clear violation of the chiral symmetry

restoration condition in Eq. 7, unless both sides of the equation trivially vanish.

3. Lattice setup

Lattice QCD calculations were carried out at𝑇 ≈ 205 MeV≈ 1.6𝑇𝑐 for (2+1)-flavor QCD using
the highly improved staggered quarks and the tree-level Symanzik gauge action. The 𝑚𝑠 was tuned
to its physical value, and three lattice spacings 𝑎 = (𝑇𝑁𝜏)−1 = 0.12, 0.08, 0.06 fm corresponding to
𝑁𝜏 = 8, 12, 16, were used [22]. Calculations were done with 𝑚𝑙 = 𝑚𝑠/20, 𝑚𝑠/27, 𝑚𝑠/40, 𝑚𝑠/80,
𝑚𝑠/160 that correspond to 𝑚𝜋 ≃ 160, 140, 110, 80, 55 MeV, respectively. The spatial extents (𝑁𝜎)
of the lattices were chosen to have aspect ratios in the range of 𝑁𝜎/𝑁𝜏 = 4 − 9. 𝜌 and 𝐶𝑛 were
computed by measuring 𝜌𝑈 (𝜆) over the entire range of 𝜆 using the Chebyshev filtering technique
combined with the stochastic estimate method [23–26] on about 2000 configurations where each
configuration is separated by 10 time units. Orders of the Chebyshev polynomials were chosen to
be (1− 5) × 105 and 24 Gaussian stochastic sources were used. Measurements of 𝜒disc and 𝜒𝜋 − 𝜒𝛿

were done by inverting the light fermion matrix using 50 Gaussian random sources on 2000−10000
configurations. Apart from the data sets as shown in above which were reported in [22], in this paper
we also add new results based on simulations with 𝑚𝑙 = 𝑚𝑠/160 on 𝑁𝜏 = 12, 16 lattices. For each
of these two parameter sets 4200-5200 configurations each separated by 10 time units are generated,
and 𝜒disc and 𝜒𝜋 − 𝜒𝛿 are measured by inverting the fermion matrix on these configurations.

4. Results
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Figure 1: Left: 𝑚𝑙 dependence of 𝑚−1
𝑙

𝜕𝜌(𝜆, 𝑚𝑙)/𝜕𝑚𝑙 and 𝜕2𝜌(𝜆, 𝑚𝑙)
/
𝜕𝑚2

𝑙
using 𝑁𝜏 = 8 lattices.

Middle: 𝑎 and 𝑉 dependence of 𝜕2𝜌(𝜆, 𝑚𝑙)
/
𝜕𝑚2

𝑙
and 𝜕3𝜌(𝜆, 𝑚𝑙)/𝜕𝑚3

𝑙
(inset) for 𝑚𝜋 = 80 MeV. Right:

The differences ΔPo
𝑛 = 𝑚𝑛−2

𝑙

[
𝜕𝑛𝜌/𝜕𝑚𝑛

𝑙
− (𝜕𝑛𝜌/𝜕𝑚𝑛

𝑙
)Po] for 𝑚𝜋 = 80 MeV and three lattice spacings.

Fig. 1 (left) shows the 𝑚𝑙 dependence of 𝑚−1
𝑙
𝜕𝜌/𝜕𝑚𝑙 and 𝜕2𝜌/𝜕𝑚2

𝑙
at 𝑇 ≈ 1.6𝑇𝑐, obtained

on 𝑁𝜏 = 8 and the largest available 𝑁𝜎 for that 𝑚𝑙. We observe that 𝑚−1
𝑙
(𝜕𝜌/𝜕𝑚𝑙) and 𝜕2𝜌/𝜕𝑚2

𝑙

are almost equal to each other and independent of 𝑚𝑙. Also, 𝑚−1
𝑙
𝜕𝜌/𝜕𝑚𝑙 and 𝜕2𝜌/𝜕𝑚2

𝑙
develops

a peak at 𝜆 → 0 and it drops rapidly toward zero for 𝜆/𝑇 ≳ 1. Fig. 1 (middle) depicts the
lattice spacing and volume dependence of 𝜕2𝜌/𝜕𝑚2

𝑙
and 𝜕3𝜌/𝜕𝑚3

𝑙
for 𝑚𝜋 = 80 MeV. To compare

these quantities across different lattice spacings we multiply with the appropriate powers of 𝑚𝑠

to make them renormalization group invariant and make them dimensionless by rescaling with
appropriate powers of 𝑇𝑐 = 132 MeV. We see that the peaked structure in 𝜕2𝜌/𝜕𝑚2

𝑙
at 𝜆 → 0

4
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becomes sharper as 𝑎 → 0, and shows little volume dependence. Moreover, 𝜕3𝜌/𝜕𝑚3
𝑙

are found
to be consistent with zero within errors. The findings 𝑚−1

𝑙
𝜕𝜌/𝜕𝑚𝑙 ≈ 𝜕2𝜌/𝜕𝑚2

𝑙
and 𝜕3𝜌/𝜕𝑚3

𝑙
≈ 0

show that the peaked structure 𝜌(𝜆 → 0, 𝑚𝑙 → 0) ∝ 𝑚2
𝑙
. In Fig. 1 (right) we show the difference

ΔPo
𝑛 = 𝑚𝑛−2

𝑙

[
𝜕𝑛𝜌/𝜕𝑚𝑛

𝑙
− (𝜕𝑛𝜌/𝜕𝑚𝑛

𝑙
)Po] (𝑛 = 1, 2), with the Poisson approximations for 𝜕𝑛𝜌/𝜕𝑚𝑛

𝑙

as defined in Eq. 10 and Eq. 11. The fact ΔPo
𝑛 < 0 shows that the repulsive non-Poisson correlation

within the small 𝜆 gives rise to the 𝜌(𝜆 → 0) peak.
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Figure 2: Comparisons of direct measurements (open symbols) of 𝜒𝜋 − 𝜒𝛿 (left) and 𝜒disc (right) with those
reconstructed (filled symbols, slightly shifted horizontally for visibility) from 𝜌 and 𝜕𝜌/𝜕𝑚𝑙 using Eq. 9.

In Fig. 2 we show that 𝜌 and 𝜕𝜌/𝜕𝑚𝑙 reproduce directly measured 𝜒𝜋 − 𝜒𝛿 and 𝜒disc using
Eq. 9. We checked that only the infrared 𝜆/𝑇 ≲ 1 parts of 𝜌 and 𝜕𝜌/𝜕𝑚𝑙 are needed for the
reproductions of 𝜒𝜋 − 𝜒𝛿 and 𝜒disc. Additionally, we checked that once the bin-size of 𝜆 in the
numerical integration of left equation of Eq. 9 is chosen to reproduce directly measured 𝜒𝜋 − 𝜒𝛿 ,
the same bin size automatically reproduces 𝜒disc and

〈
𝜓̄𝜓

〉
without any further tuning.
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Figure 3: Left: 𝑚𝑠 ⟨𝜓̄𝜓⟩/𝑇4
𝑐 as a function of quark mass for three lattice spacings with two different fit

ansatz. The solid lines denote linear fits in quark mass while the dashed lines denote quadratic fits in quark
mass. Right: Same as the left one but for 𝑚2

𝑠𝜒disc/𝑇4
𝑐 . Here the solid lines denote quadratic fits while the

dashed lines represent linear fits in quark mass.

In the left panel of Fig. 3 we show the quark mass dependence of chiral condensate in detail.
We performed linear fits (solid lines) and a quadratic fits (dotted lines) in quark mass to the chiral
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condensate. It can be clearly seen that the linear fits give a good description of the data and the
fit result of chiral condensates at each lattice spacing vanish in the chiral limit. This is in accord
with the expectation 𝑍 [U] is an even function of 𝑚𝑙 for 𝑇 ≥ 𝑇𝑐 due to the restoration of the 𝑍 (2)
subgroup of 𝑆𝑈 (2)L × 𝑆𝑈 (2)R 1. This leads to the expectation that the 𝜒disc should be quadratic in
quark mass as 𝑚𝑙 → 0. As can be seen from the right panel of Fig. 3 which shows the 𝑚2

𝑠𝜒disc/𝑇4
𝑐

as a function of quark mass for 𝑁𝜏 = 8, 12, 16, the data indeed favors the quadratic dependence of
𝑚2

𝑠𝜒disc/𝑇4
𝑐 in quark mass as 𝑚𝑙 → 0.
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Figure 4: Continuum and chiral extrapolated results for 𝜒disc (left) and 𝜒𝜋 − 𝜒𝛿 (right) at 𝑇 ≈ 205 MeV. See
text for details.

In Fig. 4 we show the continuum and chiral extrapolated results for 𝜒disc and 𝜒𝜋 − 𝜒𝛿 . With
the additional 2 data points at 𝑚𝑠/𝑚𝑙 = 160 (or 𝑚𝜋 = 55 MeV) on 𝑁𝜏= 12 and 16, we follow
the same analysis methods as in our previous studies [22]. I.e. using data for 𝑁𝜏 = 8, 12, 16
and 𝑚𝜋 ≤ 140 MeV, we performed a joint 𝑎, 𝑚𝑙 → 0 extrapolation of the form 𝜒disc(𝑎, 𝑚𝑙) =

𝜒disc(0, 0) + 𝑎1/𝑁2
𝜏 + 𝑎2/𝑁4

𝜏 + (𝑚𝑙/𝑚𝑠)2 [𝑏0 + 𝑏1/𝑁2
𝜏 + 𝑏2/𝑁4

𝜏

]
. Fits were performed on each

bootstrap sample of the data set. The bootstrap samples were created by randomly choosing data
from Gaussian distributions with means equal to the average values and variances equal to the
errors of 𝜒disc. We chose the median value as the final result (depicted by the upward triangles)
and the 68% percentiles confidence interval of the resulting bootstrap distribution as the errors (the
band labeled by 𝑁𝜏

8,12,16−−−−−→ ∞). Since we used the so-called rooted-staggered formulation [27],
we also checked that the same 𝜒disc(0, 0) is obtained within errors by first carrying out the 𝑎 → 0
extrapolations for each 𝑚𝑙 and then performing the 𝑚𝑙 → 0 extrapolation. For this purpose, we
used the 𝑁𝜏 = 12, 16 data for each of 𝑚𝑙 = 𝑚𝑠/27, 𝑚𝑠/40, 𝑚𝑠/80, 𝑚𝑠/160 to obtain 𝜒disc(0, 𝑚𝑙) by
fitting to the ansatz 𝜒disc(𝑎, 𝑚𝑙) = 𝜒disc(0, 𝑚𝑙) + 𝑑1/𝑁2

𝜏 . Then the chiral extrapolation was carried
out using 𝜒disc(0, 𝑚𝑙) = 𝜒disc(0, 0) + 𝑑2(𝑚𝑙/𝑚𝑠)2 based on the continuum estimates of 𝜒disc(0, 𝑚𝑙).
These extrapolations were done by using the same bootstrap procedure described before and the
final results are indicated with the label 𝑁𝜏

12,16−−−−→ ∞. The same procedures were followed also for
𝜒𝜋 − 𝜒𝛿 to obtain its continuum and chiral extrapolated values. After carrying out continuum and
chiral extrapolations we obtained that 𝜒disc(0, 0) is 3.0 ± 1.1 for the sequential fit and 5.7 ± 2.3 for
the joint fit, which is 2-3 𝜎 away from 0, while [𝜒𝜋 − 𝜒𝛿] (0, 0) is 6.7 ± 1.1 for the sequential fit

1In the staggered discretization formalism the remnant chiral symmetry at nonzero lattice spacing is O(2).

6



P
o
S
(
L
A
T
T
I
C
E
2
0
2
1
)
6
1
9

P
o
S
(
L
A
T
T
I
C
E
2
0
2
1
)
6
1
9

Correlated Dirac Eigenvalues and Axial Anomaly in Chiral Symmetric QCD Y. Zhang

and 7.8 ± 2.2 for the joint fit, which is 4-6 𝜎 away from 0. We find that Eq. 7 is satisfied within
errors, and 𝜒disc and 𝜒𝜋 − 𝜒𝛿 are nonvanishing at a confidence level above 95%. These results are
consistent with those obtained without the two additional data points [22].

5. Conclusions

In this work we establish relations between 𝜕𝑛𝜌/𝜕𝑚𝑛
𝑙

and 𝐶𝑛+1. Based on these relations,
we present direct computations of 𝜕𝑛𝜌/𝜕𝑚𝑛

𝑙
employing state-of-the-art lattice QCD techniques.

Based on these results we conclude that, in chiral symmetric (2+1)-flavor QCD at 𝑇 ≈ 1.6𝑇𝑐, (i)
𝜌(𝜆 → 0, 𝑚𝑙) develops a peaked structure due to repulsive non-Poisson correlations within small 𝜆;
the peak becomes sharper as 𝑎 → 0, and its amplitude is ∝ 𝑚2

𝑙
. (ii) The underlying presence of this

𝜌(𝜆 → 0, 𝑚𝑙) leads to manifestations of 𝑈 (1)A anomaly in 𝜒𝜋 − 𝜒𝛿 and 𝜒disc. (iii) Axial anomaly
remains manifested in 𝜒𝜋 − 𝜒𝛿 and 𝜒disc even in the chiral limit. These suggest that for 𝑇 ∼ 1.6𝑇𝑐
the microscopic origin of axial anomaly is driven by the weakly interacting (quasi)instanton gas
motivated 𝜌(𝜆 → 0, 𝑚𝑙 → 0) ∼ 𝑚2

𝑙
𝛿(𝜆), and the chiral phase transition in (2+1)-flavor QCD is of

the three-dimensional 𝑂 (4) universality class.
The above conclusions are based on the continuum extrapolated lattice QCD calculations using

the (2+1) flavors of staggered fermions. Confirmations of these continuum extrapolated results
using other fermion actions, especially using chiral fermions, are needed in future. Even in those
future calculations it will be very difficult to directly identify a structure like 𝑚2

𝑙
𝛿(𝜆) in 𝜌 itself as

𝑚𝑙 → 0. The formalism developed and techniques presented in this work for directly accessing
𝜕𝑛𝜌/𝜕𝑚𝑛

𝑙
will be essential for those future studies too.
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