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1. Introduction

The tensor renormalization group (TRG) is an promising approach for computing lattice field
theory. It was originally proposed by Levin-Nave in 2007 [1] for analyzing the two-dimensional
Ising model. Some improvements[2–6], higher dimensional algorithms [7–9] and algorithms for
fermion theory[10–15] have been proposed so far. Since this method has no sign problem from the
beginning, it is expected to be applied to important models for understanding the evolution of the
early universe and the origin of matter, such as finite density QCD, supersymmetric theory, chiral
gauge theory, theta vacuum and their real-time simulations.

The TRG was actually introduced into the study of quantum field theory in the last decade.
So far, various models of lattice field theories have been investigated. In two dimensions, the TRG
was applied to scalar field theory [16–22], Schwinger model[14, 23, 24], Gross-Neveu model[25],
CP(N-1) model[26, 27], Wess-Zumino model[28] and related studies[29], gauge Higgs model[30],
U(1) lattice gauge theory with theta term[31], 2d gravity[32] and SU(N) Yang-Mills theory[33, 34]
and O(2) nonlinear sigma model[35]. In three dimensions, the TRG calculations were performed
in 𝑍2 gauge theory[36], 𝑂 (2) model[37]. In four dimensions, scalar field theory[38, 39], and NJL
model[40] and 𝑍2 gauge-Higgs model[41] were studied. Theoretical study related with quantum
gravity are in Refs.[42–46] and other related studies are in Refs.[29, 47–52].

This paper reviews the recent progress in the TRG method, which is important in studying
quantum field theory. In particular, we will give an overview of the handling of scalar fields, fermion
fields, and gauge fields in the tensor network method. The developing high-dimensional algorithms
are also reviewed.

The rest of this paper is organized as follows. In section 2, the Levin-Nave TRG method is
reviewed. A tensor network representation of scalar field theory is introduced in section 3. After
which, section 4 introduces the TRG method for lattice fermion theory. Section 5 describes a new
method of calculating gauge theory by the TRG method. In section 6, the TRG approach to higher
dimensional theories is presented. Finally section 7 presents summary and future outlook.

2. Tensor networks and the TRG

We begin with considering the TRG method in classical Ising model on two dimensional square
lattice. Throughout this paper the lattice spacing 𝑎 is set to 𝑎 = 1 and lattice sites are labeled by 𝑑
integers as 𝑛 = (𝑛1, 𝑛2, . . . , 𝑛𝑑) ∈ Γ𝑑 . The unit vector of the 𝜇 direction is denoted by �̂�. For later
convenience, we denote a 𝑑-dimensional hyper cubic lattice as Γ𝑑 = {(𝑛1, 𝑛2, · · · , 𝑛𝑑) |𝑛𝑖 ∈ Z}.

Let 𝜎𝑛 be the spin variable that takes 𝜎𝑛 = ±1. The Hamiltonian is defined by 𝐻 =
−𝐽∑

⟨𝑖, 𝑗 ⟩ 𝜎𝑖𝜎𝑗 where ⟨𝑖, 𝑗⟩ denotes all possible pairs of nearest neighbor sites. For simplicity,
we take 𝐽 = 1. The partition function is given as 𝑍 = Tr e−𝛽𝐻 with the inverse temperature
𝛽 = 1/𝑇 .

In order to define a tensor, we decompose the hopping term e𝛽𝜎𝑖𝜎 𝑗 as

e𝛽𝜎𝑖𝜎 𝑗 =
1∑
𝐼=0

𝑊𝜎𝑖 𝐼𝑊𝜎 𝑗 𝐼 (1)
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where 𝑊𝜎𝐼 =
√

cosh(𝛽)
√

tanh(𝛽)𝐼𝜎𝐼 for 𝐼 = 0, 1 and 𝜎 = ±1. Note that 𝜎𝑖 interacts with its
nearest neighbor variable 𝜎𝑗 via the new index 𝐼 which is defined on the link from 𝑖 to 𝑗 . This
decomposition is applied to all the hopping terms. Then, in case of one-dimension, the partition
function is expressed by 𝑍 = tr(𝑇𝑁 ) where𝑇 is a transfer matrix defined by𝑇𝐼 𝐽 ≡ ∑

𝜎=±1𝑊𝜎𝐼𝑊𝜎𝐽 .
In two-dimensions, since the four hopping terms are stemmed from a site, a rank-4 tensor

appears:

𝑇𝑖 𝑗𝑘𝑙 =
∑
𝜎=±1

𝑊𝜎𝑖𝑊𝜎 𝑗𝑊𝜎𝑘𝑊𝜎𝑙 . (2)

Thus we have a tensor network representation of 𝑍 as

𝑍 = Tr
∏
𝑛∈Γ2

𝑇𝑥𝑛𝑥′𝑛𝑦𝑛𝑦′𝑛 . (3)

Here 𝑥 ′𝑛 = 𝑥𝑚 for 𝑚 is the nearest neighbor site of 𝑛 in the positive 𝑥 direction, and the same
applies to 𝑦′𝑛. Here the trace of (3) denotes the summation of index that appears twice over all
possible values of the index. Fig.1 shows (2) and (3) graphically. The form of (3) is kept in every
renormalization step of tensor network, as shown below.

Figure 1: Tensor (a) and tensor network on 2d square lattice (b).

In the Levin-Nave TRG, the singular value decomposition (SVD) is used to renormalize the
tensor network. The SVD of an 𝑛 × 𝑛 matrix 𝑀𝐼 𝐽 is given by

𝑀𝐼 𝐽 =
𝑛∑
𝑎=1

𝜎𝑎𝑈𝐼 𝑎𝑉
∗
𝐽𝑎, (4)

where 𝜎𝑎 are singular values sorted in the descending order as 𝜎1 ≥ 𝜎2 ≥ · · · ≥ 𝜎𝑛 ≥ 0 and
𝑈, 𝑉 are unitary matrices. The SVD provides the best 𝑚-rank approximation of 𝑀 for 𝑚 ≤ 𝑛 as
𝑀𝐼 𝐽 ≈ ∑𝑚

𝑎=1 𝜎𝑎𝑈𝐼 𝑎𝑉
∗
𝐽𝑎 truncating the summation range.

The rank-4 tensor 𝑇𝑖 𝑗𝑘𝑙 can be decomposed by the SVD as 𝑇𝑖 𝑗𝑘𝑙 =
∑𝐷2

𝑎=1 𝜎𝑎𝑈𝑖 𝑗𝑎𝑉
∗
𝑘𝑙𝑎 because it

is a matrix regarding four tensor indices as the column 𝐼 = (𝑖, 𝑗) or the row 𝐽 = (𝑘, 𝑙). So we have
an approximate decomposition of the tensor at even sites (𝑛1 + 𝑛2 mod 2 = 0) as

𝑇𝑖 𝑗𝑘𝑙 ≈
𝐷∑
𝑎=1

𝐸𝑖 𝑗𝑎 �̄�𝑘𝑙𝑎, (5)
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where 𝐸𝑖 𝑗𝑎 =
√
𝜎𝑎𝑈𝑖 𝑗𝑎 and �̄�𝑖 𝑗𝑎 =

√
𝜎𝑎𝑉

∗
𝑖 𝑗𝑎. Similarly, at odd sites (𝑛1 + 𝑛2 mod 2 = 1), we have

another decomposition,

𝑇𝑖 𝑗𝑘𝑙 ≈
𝐷∑
𝑎=1

𝑂 𝑗𝑘𝑎�̄�𝑙𝑖𝑎, (6)

by identifying the tensor indices as the column 𝐼 = ( 𝑗 , 𝑘) or the row 𝐽 = (𝑙, 𝑖) of the matrix to be
decomposed. Fig.2 shows these decompositions. We should note that new index 𝑎 actually runs
from 1 to 𝐷2 and in (5) and (6) the summations are truncated upto 𝐷.

Figure 2: Decompositions of the tensor at even sites (a) and odd sites (b).

We define a renormalized tensor with new index as

𝑇 ′
𝑎𝑏𝑐𝑑 =

𝐷∑
𝑖, 𝑗 ,𝑘,𝑙=1

𝐸𝑖 𝑗𝑎�̄� 𝑗𝑘𝑏 �̄�𝑘𝑙𝑐𝑂𝑙𝑖𝑑 , (7)

by integrating old indices 𝑖, 𝑗 , 𝑘, 𝑙. From the construction, the partition function is again expressed
as a tensor network of the form (3) with the tensor (7). Fig.3 shows a renormalization step of the
Levin-Nave TRG, which is the transformation from 𝑇 to 𝑇 ′. Thus we have a series of renormalized
tensors from the initial tensor 𝑇 (0) as 𝑇 (0) → 𝑇 (1) → 𝑇 (2) → · · · by repeating above procedure
again and again. If the tensor network is put on the periodic lattice of the size 2𝑁 × 2𝑁 , after 2𝑁
renormalizations 𝑍 is approximated by a single tensor 𝑇 (2𝑁 ) as 𝑍 ≈ ∑𝐷

𝑖, 𝑗=1 𝑇
(2𝑁 )
𝑖 𝑗𝑖 𝑗

Figure 3: Decompositions of the tensor at even sites (a) and at odd sites (b).

The algorithm of the Levin-Nave TRG scales with 𝑂 (𝐷6). The computational cost can be
reduced upto 𝑂 (𝐷5) using the randomized SVD. The systematic error derived from the finite 𝐷 is
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evaluated by changing 𝐷 and investigating the 𝐷 dependence of the result. In numerical calculation,
we typically use 𝐷 ≃ 10 − 100. In Fig.4 of Ref.[7], the free energy is obtained with good accuracy
for 𝐷 = 24.

3. Scalars

We consider a 𝑑-dimensional scalar field theory with a lattice action,

𝑆B =
∑
𝑛∈Γ𝑑

1
2

𝑑∑
𝜇=1

(
𝜙𝑛+�̂� − 𝜙𝑛

)2 +𝑉 (𝜙𝑛)
 . (8)

where a real scalar field 𝜙 and 𝑉 (𝜙) = 𝑚2𝜙2/2 + 𝜆𝜙4/4. The partition function is defined as

𝑍B =
∫

D𝜙𝑒−𝑆B (𝜙) , (9)

where
∫
D𝜙 =

∫ ∞
−∞

∏
𝑛∈Γ𝑑 d𝜙𝑛. Unlike the Ising model, a naive tensor of this theory has an

infinite bond dimension because the field variable which is essentially the tensor index takes any
real number. Therefore a discretization of the scalar field is needed to define a finite dimensional
tensor.

The Gaussian quadrature rule is widely used to approximate an integral of the form 𝐼 =∫ ∞
−∞ 𝑑𝑥 𝑓 (𝑥). If the integrand 𝑓 (𝑥) has exponentially damping factors as 𝑓 (𝑥) ∼ exp(−𝑥2), the

Gauss-Hermite quadrature,

𝐼 ≈
∑
𝑥∈𝑆𝐾

𝑔𝐾 (𝑥) 𝑓 (𝑥), (10)

approximates the integral well. Here 𝑆𝐾 is the set of roots of the 𝐾th Hermite polynomial 𝐻𝐾 (𝑥)
and 𝑔𝐾 (𝑥) is a weight function defined by

𝑔𝐾 (𝑥) =
2𝐾−1𝐾!

√
𝜋

(𝐾𝐻𝐾−1(𝑥))2 𝑒
𝑥2
. (11)

The approximate expression (10) is expected to reproduce the original integral 𝐼 in the large 𝐾 limit.
In actual numerical calculation, we numerically check the convergence of the result at large 𝐾 .

Replacing each integral of the path integral by (10) as∫ ∞

−∞
𝑑𝜙𝑛 →

∑
𝜙𝑛∈𝑆𝐾

𝑔𝐾 (𝜙𝑛), (12)

we obtain an approximation of the partition function,

𝑍 ′
B ≡

∑
{𝜙}

( ∏
𝑛∈Γ𝑑

𝑔𝐾 (𝜙𝑛)
)
· 𝑒−𝑆𝐵 (𝜙) , (13)

where ∑
{𝜙}

≡
∏
𝑛∈Γ𝑑

∑
𝜙𝑛∈𝑆𝐾

. (14)
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𝑍 ′
B depends on 𝐾 . Since exp(−𝑆𝐵) decreases rapidly for large 𝜙, 𝑍B is expected to be reproduced

from 𝑍 ′
B taking 𝐾 → ∞.

If we define a hopping term as

𝑓 (𝜙, 𝜙′) = (𝑔𝐾 (𝜙)𝑔𝐾 (𝜙′))
1

2𝑑 exp
{
−1

2
(𝜙 − 𝜙′)2 − 1

2𝑑
(𝑉 (𝜙) +𝑉 (𝜙′))

}
, (15)

we have

𝑍 ′
B =

∑
{𝜙}

∏
𝑛∈Γ𝑑

𝑓 (𝜙𝑛, 𝜙𝑛+1̂) 𝑓 (𝜙𝑛, 𝜙𝑛+2̂) · · · 𝑓 (𝜙𝑛, 𝜙𝑛+𝑑). (16)

Note that 𝑓 is a 𝐾 ×𝐾 matrix for 𝜙, 𝜙′ ∈ 𝑆𝐾 . Since 𝑓 is a real symmetric matrix, we can decompose
it as 𝑓 (𝜙, 𝜙′) = ∑𝐾

𝐴=1 𝑒𝐴𝑈𝜙𝐴𝑈𝜙′𝐴 by the SVD (Takagi’s factorization) where 𝑒𝐴 are singular values
sorted as 𝑒1 ≥ 𝑒2 ≥ · · · ≥ 0 and𝑈 is a unitary matrix. Thus, for 𝜙, 𝜙′ ∈ 𝑆𝐾 , we have

𝑓 (𝜙, 𝜙′) =
𝐾∑
𝐴=1

𝑊𝜙𝐴𝑊𝜙′𝐴 (17)

where𝑊𝜙𝐴 =
√
𝑒𝐴𝑈𝜙𝐴.

An important point here is that (16) is very similar to the partition function of the classical
Ising model except for the difference between 𝜎𝑛 ∈ {−1, +1} and 𝜙𝑛 ∈ 𝑆𝐾 . So we can define a
finite dimensional tensor using the same way as (1).

Thus a tensor network representation of the partition function can be obtained by using (17).
For instance, in two dimensions, comparing (17) to (1), we find that 𝑍 ′

B is expressed as the tensor
network (3) with a tensor

𝑇𝐼 𝐽𝐾𝐿 =
∑
𝜙∈𝑆𝐾

𝑊𝜙𝐼𝑊𝜙𝐽𝑊𝜙𝐾𝑊𝜙𝐿 . (18)

Once the tensor network representation is obtained, we can evaluate the numerical value of 𝑍 ′
B

using the TRG.
In two dimensions, the cost of the fist step of the Levin-Nave TRG scales with O(𝐾6) instead

of O(𝐷6) because the bond dimension of (18) is 𝐾 . Since 𝑍 ′
B depends on 𝐾 which is the number

of discretized points, the convergence of results at large 𝐾 should be checked numerically. In actual
calculation, the value of 𝐾 is often of O(10) in two-dimensions, which is the same order of 𝐷.

Similar tensor network representations are obtained for many flavors and complex scalars. In
Ref[19], two-dimensional complex scalar theory with finite chemical potential 𝜇 was studied by the
TRG with the Gaussian quadrature. In this theory, it is expected that bulk observables such as the
particle number density do not depend on 𝜇 below a critical value. This behavior is known as the
Silver Braze phenomena which is closely related to the complex part of the action. Fig.4 of Ref.[19]
shows the particle number density obtained by the TRG. The Silver braze phenomena is clearly
observed. Therefore we find that the TRG properly works for theories with the sign problem.

4. Fermions

The partition function of fermion theory is also expressed as a tensor network. Since fermion
fields are given by Grassmann numbers, the tensor index satisfies an anti commuting rule. The

6
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tensor with such as anti-commuting index is called the Grassmann tensor [10]. Here, we introduce
the Grassmann tensor and its tensor network following the notation of Ref.[15].

We consider a rank-𝑁 tensor 𝑇𝑖1𝑖2 · · ·𝑖𝑁 with occupation numbers 𝑖𝑛 = 0, 1 for 𝑛 = 1, 2, . . . , 𝑁 .
The Grassmann tensor of rank-𝑁 is formally defined as

T𝜂1𝜂2 · · ·𝜂𝑁 =
1∑
𝑖1=0

1∑
𝑖2=0

· · ·
1∑

𝑖𝑁=0
𝑇𝑖1𝑖2 · · ·𝑖𝑁 𝜂

𝑖1
1 𝜂

𝑖2
2 · · · 𝜂𝑖𝑁𝑁 , (19)

where 𝜂𝑖 (𝑖 = 1, · · · , 𝑁) are single-component Grassmann variables satisfying {𝜂𝑖 , 𝜂 𝑗} = 0. The
tensor 𝑇𝑖1𝑖2 · · ·𝑖𝑁 is refereed to as a coefficient tensor of T . Fig.4 (a) represents (19) where 𝜂𝑛 are
denoted by 𝑁 external lines.

Figure 4: Grassmann tensor (a) and Grassmann tensor contraction (b).

We now set the rules for the Grassmann tensor contraction. The contraction has an orientation.
Taking a contraction from 𝜂𝑘 of A to 𝜁𝑙 of B, we define a Grassmann tensor C as

C𝜂1 · · ·𝜂𝑘 · · ·𝜂𝑁 𝜁1 · · ·𝜁𝑙 · · ·𝜁𝑀 ≡
∫

𝑑𝜉𝑑𝜉𝑒−𝜉 𝜉A𝜂1 · · ·𝜂𝑁B𝜁1 · · ·𝜁𝑀

����
𝜂𝑘=𝜉 ,𝜁𝑙=𝜉

. (20)

Here 𝜂𝑘 , 𝜁𝑙 mean that they are removed from the indices of C. Therefore the rank of Eq. (20) is
𝑁 + 𝑀 − 2. Fig.4 (b) show the Grassmann tensor contraction. The coefficient tensor of C is read
from (20) as

𝐶𝑖1 · · · ˇ𝑖𝑘 · · ·𝑖𝑁 𝑗1 · · · 𝑗𝑙 · · · 𝑗𝑀 =
2∑
𝑚=1

𝐴𝑖1 · · ·𝑚· · ·𝑖𝑁 𝐵 𝑗1 · · ·𝑚· · · 𝑗𝑀 × (−1)𝑚(𝑖𝑘+1+···+𝑖𝑁 + 𝑗1+···+ 𝑗𝑙−1) (21)

replacing 𝑖𝑘 , 𝑗𝑙 with 𝑚 in the RHS and the others unchanged. Here ˇ𝑖𝑘 and 𝑗𝑙 are absent as the
tensor index of the LHS. We find that there is an extra sign factor that comes from the Grassmann
contraction rule.

We define a Grassmann tensor network as a product of Grassmann tensors whose indices are
contracted under (20). Using the Grassmann contraction rule, matrix decompositions such as the
SVD can be given as decompositions of a Grassmann tensor into two Grassmann tensors. Thus the
TRG methods are easily transcribed to methods for Grassmann tensor networks.

In 𝑑 dimensions, using this notation, we can represent the partition function of local fermion
theory as a Grassmann tensor network. Let 𝜓𝑛,𝑎 and �̄�𝑛,𝑎 be fermion fields where 𝑛 ∈ Γ𝑑 and an

7
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index 𝑎 corresponding to the spinor and flavor indices runs from 1 to 𝑁 . We consider a general
form of local lattice fermion action,

𝑆𝐹 =
∑
𝑛∈Γ𝑑

�̄�𝑛𝐷𝜓𝑛 (22)

with

𝐷𝑛𝑚 = 𝑊𝛿𝑛𝑚 +
𝑑∑
𝜇=1

(𝑋𝜇)𝛿𝑛+�̂�,𝑚 +
𝑑∑
𝜇=1

(𝑌𝜇)𝛿𝑛−�̂�,𝑚, (23)

where 𝑋,𝑌,𝑊 are matrices with respect to 𝑎 as 𝑋𝑎𝑏, 𝑌𝑎𝑏,𝑊𝑎𝑏, and 𝐷𝑛𝑚 is also a matrix 𝐷𝑛𝑚;𝑎𝑏.
For the free Wilson fermion, we have

𝑊𝜇 = 1, 𝑋𝜇 = − 𝜅
2

(
1 − 𝛾𝜇

)
, 𝑌𝜇 = − 𝜅

2
(
1 + 𝛾𝜇

)
. (24)

The partition function is

𝑍 =
∫ [

D𝜓D�̄�
]

e−𝑆𝐹 , (25)

where
[
D𝜓D�̄�

]
denotes the standard fermion measure.

The partition function (25) can be expressed as a Grassmann tensor network:

𝑍 = gTr

[ ∏
𝑛∈Γ𝑑

TΨ1 (𝑛) ·· ·Ψ𝑑 (𝑛)Ψ̄𝑑 (𝑛−𝑑) ·· ·Ψ̄1 (𝑛−1̂)

]
, (26)

where gTr denotes the Grassmann contraction. Here the Grassmann tensor T depends on details
of the action. See Ref.[15] for the derivation of (26) with the concrete definition of T and the other
details. Once the tensor network representation is obtained, the numerical value of 𝑍 is obtained
by the Grassmann TRG.

5. Gauge field theory

The tensor network for gauge theory is defined by character expansions (CE). Some models
with U(1) and SU(2) have already been studied by the TRG because the CE is easily calculated
for these cases. However, for general gauge groups including SU(3), it is not straightforward to
calculate the CE. Therefore numerical values of the tensor network cannot be obtained concretely
from its formal definition with the CE for general cases. In this section, we review a method
of defining a tensor network in two dimensional Yang-Mills theory without the direct use of CE
according to Ref.[33]. Hereafter we concentrate on SU(N) gauge group but the method given below
can easily be extended to arbitrary compact gauge groups.

The lattice gauge field is given by an SU(N)-valued link field 𝑈𝜇 (𝑛) which lives on the link
(𝑛, 𝑛 + �̂�). The associated plaquette field is defined as

𝑃𝜇𝜈 (𝑛) = 𝑈𝜇 (𝑛)𝑈𝜈 (𝑛 + �̂�)𝑈†
𝜇 (𝑛 + �̂�)𝑈†

𝜈 (𝑛), (27)
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which is covariant under a lattice gauge transformation 𝑈𝜇 (𝑛) → Λ(𝑥)𝑈𝜇 (𝑛)Λ†(𝑥 + �̂�). Wilson’s
plaquette gauge action is then given by

𝑆 =
𝛽

𝑁

∑
𝑛∈Γ2

∑
𝜇<𝜈

Re tr(1 − 𝑃𝜇𝜈 (𝑛)). (28)

The partition function is

𝑍 =
∫

[𝑑𝑈] e−𝑆 , (29)

where [𝑑𝑈] = ∏
𝑛∈Γ2

∏
𝜇 𝑑𝑈𝜇 (𝑛) with the Haar measure 𝑑𝑈𝜇 (𝑛).

We now consider the two dimensional case. Then the integrand of (29) is given by the product
of exp(−𝛽/𝑁 Re tr(1 − 𝑃12(𝑛))). This factor may be regarded as an infinite dimensional tensor
putting on the center of the plaquette:

T𝑢1𝑢2𝑢3𝑢4 = exp
(
− 𝛽
𝑁

Re tr(1 − 𝑢1𝑢2𝑢
†
3𝑢

†
4)

)
(30)

where 𝑢𝑖 takes any SU(N) value. Thus we find that the partition function is expressed as a tensor
network,

𝑍 = T𝑟
∏
𝑛∈Γ2

T𝑔𝑛ℎ𝑛𝑔′𝑛ℎ′𝑛 . (31)

Here 𝑔′, ℎ′ obey the same identification as 𝑥 ′, 𝑦′ of (3) and T𝑟 denotes the integrations of link fields
𝑔𝑛 ≡ 𝑈1(𝑛) and ℎ𝑛 ≡ 𝑈2(𝑛).

Figure 5: Tensor network representation of 2d Yang-Mills theory.

We now discretize the Haar measure to define a finite dimensional tensor as∫
𝑑𝑈 𝑔(𝑈) ≈ 1

𝐾

𝐾∑
𝑖=1

𝑔(𝑈𝑖), (32)

where {𝑈1,𝑈2, . . . ,𝑈𝐾 } are random 𝑆𝑈 (𝑁) fields. Instead of (31), using this discretization for all
of 𝑑𝑈𝜇 (𝑛), we have

𝑍 ≈ Tr
∏
𝑛∈Γ2

𝑇𝑖𝑛 𝑗𝑛𝑖′𝑛 𝑗′𝑛 , (33)

9
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where

𝑇𝑖 𝑗𝑘𝑙 =
1
𝐾2 𝑒

−(𝛽/𝑁 ) Re tr (1−𝑈𝑖𝑈 𝑗𝑈†
𝑘
𝑈†
𝑙
) (34)

Here Tr denotes the summation over 𝑖𝑛, 𝑗𝑛 = 1, · · · , 𝐾 for all 𝑛 ∈ Γ2 under the proper identification of
indices. Fig.5 shows the tensor network representation graphically. This representation does not use
the CE and the numerical value of (34) is easily obtained. Since the approximated partition function
(33) depends on 𝐾 , we should check the convergence of results with respect to 𝐾 numerically.

Fig. 6 shows the free energy density 𝑓 (𝛽) = log𝑍/(𝛽𝑉) and the energy density 𝑒(𝛽) =
−(1/𝑉)𝜕log𝑍/𝜕𝛽 against 𝐾 . As can be seen in these figures, as 𝐾 increases, the numerical results
smoothly approach the exact value. We make a 𝜒2 fit for results at 𝐾 = 70, 80, . . . , 120 using
𝑔(𝐾) ≡ 𝜇 + 𝛼𝐾−𝑝. Table 1 shows obtained fit results. We find that the extrapolated results to large
K are very close to the exact values and our method properly works for SU(3) gauge group.
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Figure 6: 𝐾 dependences of 𝑓 (𝛽) (Left) and 𝑒(𝛽) (Right) with 𝛽/𝑉 = 0.005, 𝑉 = 642, 𝐷 = 90 for SU(3).

(exact) 𝜇 𝛼 𝑝 𝜒2/DOF
𝑓 (𝛽) -9.4323 −9.4400+0.0019

−0.0043 −0.3+0.2
−1.7 × 1010 5.31+0.44

−0.01 0.21
𝑒(𝛽) 0.1923 0.1941+0.0017

−0.0008 2.2+5.6
−1.6 × 1010 5.88+0.29

−0.01 1.18

Table 1: Results of the 𝜒2 fit for 𝑆𝑈 (3).

6. TRG in higher dimensions

Some higher dimensional TRG methods have been proposed so far. The HOTRG[7] is the
most famous one which can be applied to any dimension. We firstly review the HOTRG method,
after which we will see the triad TRG method[9] in which smaller rank tensors are constituents of
a tensor network to reduce the computational cost.

We consider a 𝑑-dimensional lattice model with local interactions consisting of bosonic fields
since fermions are easily included using the Grassmann tensors. As discussed in the previous
sections, we may give a tensor in the form

𝑇𝑖1𝑖2,...𝑖2𝑑 =
∑
𝑎

𝑊 (1)
𝑎𝑖1
𝑊 (2)
𝑎𝑖2

· · ·𝑊 (2𝑑)
𝑎𝑖2𝑑

. (35)
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Here 𝑊 (𝑚)
𝑎𝑖 are originated from the hopping terms on 2𝑑 links. If the theory is invariant under

the euclidean group symmetry, the 2𝑑 hopping terms provide the same 𝑊 , that is, 𝑊 (𝑚) = 𝑊 for
𝑚 = 1, 2 · · · 2𝑑. Hereafter we focus on the case of 𝑑 = 3. The partition function is then expressed
as a tensor network

𝑍 = Tr
∏
𝑛∈Γ3

𝑇𝑥𝑛𝑦𝑛𝑧𝑛𝑥′𝑛𝑦′𝑛𝑧′𝑛 . (36)

with the rank-6 tensor (35) for 𝑑 = 3. Here we assume that each tensor index runs from 1 to 𝐷.
The renormalization of the HOTRG is carried out for 𝑥, 𝑦, 𝑧 directions alternately. It is enough

to define the renormalization along 𝑧 axis. As shown in Fig. 7 (a), we first introduce a rank-10
tensor 𝑀 as

𝑀𝑥𝑥′𝑦𝑦′𝑧𝑧′ ≡
∑
𝑑

𝑇𝑥1𝑦1𝑑𝑥
′
1𝑦

′
1𝑧

′𝑇𝑥2𝑦2𝑧𝑥
′
1𝑦

′
1𝑑

(37)

where 𝑥 = 𝑥1 ⊗ 𝑥2 and 𝑦 = 𝑦1 ⊗ 𝑦2 and the same applies to 𝑥 ′ and 𝑦′. Let us introduce a
matrix representation of 𝑀 as 𝑀 ′

𝑥,𝑥′𝑦𝑦′𝑧𝑧′ ≡ 𝑀𝑥𝑥′𝑦𝑦′𝑧𝑧′. Then, we diagonalize a 𝐷2 × 𝐷2 matrix
𝐾1 ≡ 𝑀 ′𝑀 ′† as

𝐾1 = 𝑈Λ1𝑈
† (38)

where Λ1 is a diagonal matrix in which eigenvalues are sorted in the descending order and𝑈 is the
unitary matrix containing the eigenvectors. Similarly, for the 𝑦 direction, we have

𝐾2 = 𝑉Λ2𝑉
† (39)

where 𝐾2 ≡ 𝑀 ′′𝑀 ′′† with a matrix representation as 𝑀 ′′
𝑦,𝑥𝑥′𝑦′𝑧𝑧′ ≡ 𝑀𝑥𝑥′𝑦𝑦′𝑧𝑧′. 𝑈 and 𝑉 can also

be obtained from other diagonalizations, and better ones are selected by comparing residuals. See
Ref.[7] for the details.

Using two isometries𝑈 and 𝑉 , a renormalized tensor is defined as

𝑇 ′
𝑥𝑥′𝑦𝑦′𝑧𝑧′ ≡

𝐷2∑
𝑖, 𝑗 ,𝑘,𝑙=1

𝑈†
𝑥𝑖𝑉

†
𝑦𝑘𝑀𝑖 𝑗𝑘𝑙𝑧𝑧′𝑈 𝑗 𝑥′𝑉𝑙𝑦′, (40)

which is shown in Fig. 7 (b). Here, although 𝑥, 𝑦, 𝑥 ′, 𝑦′ of𝑇 ′ run from 1 to 𝐷2 originally, we truncate
the bond dimension so that all indices runs from 1 to 𝐷. Thus 𝑍 is again given by the tensor network
with the renormalized tensor 𝑇 ′. This completes a renormalization step of the HOTRG.

Repeating the above renormalization for 𝑥, 𝑦, 𝑧 axes alternately, we obtain a series of renor-
malized tensors 𝑇 (0) → 𝑇 (1) → 𝑇 (2) → · · · starting from the initial tensor 𝑇 (0) . For a periodic
lattice of a finite volume 𝑉 = 23𝑁 (= 2𝑁 × 2𝑁 × 2𝑁 ) where 𝑁 is an integer, we finally obtain an
approximation of 𝑍 as 𝑍 ≈ ∑

𝑥,𝑦,𝑧 𝑇
(3𝑁 )
𝑥𝑥𝑦𝑦𝑧𝑧 . In 𝑑 dimensions, the HOTRG is formulated in the

similar manner. The cost of the HOTRG scales with O(𝐷4𝑑−1) which comes from the contractions
that make the renormalization tensor.

The reason why the computational cost of the HOTRG is high is that it involves the contraction
of two rank 2𝑑 tensors. If a renormalization group is formulated on a tensor network made only of
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Figure 7: 𝑀 of the HOTRG (a) and the renormalized tensor (b)

smaller rank tensors, the cost could be naturally reduced. The triad TRG method is created with
this kind o idea in the background.

For 𝑑 = 3, without any approximation, the initial tensor (35) can be written in the form

𝑇𝑖 𝑗𝑘𝑙𝑚𝑛 =
∑
𝑎,𝑏,𝑐

𝐴𝑖 𝑗𝑎𝐵𝑎𝑘𝑏𝐶𝑏𝑙𝑐𝐷𝑐𝑚𝑛, (41)

where

𝐴𝑖 𝑗𝑎 = 𝑊 (1)
𝑎𝑖 𝑊

(2)
𝑎 𝑗 , (42)

𝐵𝑎𝑘𝑏 = 𝛿𝑎𝑏𝑊
(3)
𝑎𝑘 , (43)

𝐶𝑏𝑙𝑐 = 𝛿𝑏𝑐𝑊
(4)
𝑏𝑙 , (44)

𝐷𝑐𝑚𝑛 = 𝑊
(5)
𝑐𝑚𝑊

(6)
𝑐𝑛 . (45)

This kind of tensor representation is referred to as a triad representation in this paper. Fig.8 shows
this representation.

Figure 8: Triad representation (41).

The triad representation is not unique because we have many other decompositions with rank-3
tensors. Of course, there exist mixture representations in which rank-4 and higher rank tensors are
used to give the rank 2𝑑 tensors in 𝑑 dimensions. Possible representations are shown in Fig.9. The
computational cost of the triad TRG is shown to be reduced to O(𝐷𝑑+3) in 𝑑 dimensions with using
the randomized singular value decomposition (RSVD). See the appendix A of Ref. [9] for the detail
of the RSVD.

In the rest of this section, we explain the triad TRG method for 𝑑 = 3 briefly. Fig.10 shows
the evaluation of 𝐾 = 𝑀𝑀† in the representation. We can evaluate 𝐾 at a cost of O(𝐷6). The

12
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Figure 9: Possible representations of the tensor 𝑇 .

isometries are obtained at a cost of O(𝐷6) from the diagonalization of 𝐾 . These costs are reduced
to O(𝐷5) with the RSVD. The situation does not change for higher dimensions. The cost of making
isometries does not depend on the dimensionality and is always O(𝐷6) (O(𝐷5) with the RSVD)
for any dimension. Once the isometries are obtained, we can create a renormalized triad at a cost of
O(𝐷6) for 𝑑 = 3 with the RSVD. The total cost of the triad TRG becomes O(𝐷𝑑+3) in 𝑑 dimensions.
See Ref.[9] for the detail of making the renormalized triads.

Figure 10: Evaluation of 𝑀𝑀†.

The free energy of 3d Ising classical model are obtained by the three TRG methods (HOTRG,
ATRG, and the triad TRG) in Ref.[9] The triad TRG method shows a better performance in 3
dimensions.

As shown in Fig11, the error at a fixed computational time depends on a kind of tensor
representation. Let 𝑁𝑖 be the number of internal indices of a representation such as 𝑎, 𝑏, 𝑐 for the
representation (41). If 𝑁𝑖 is very large, the calculation will be less accurate due to the decomposition
corresponding to the internal index, which will increase the error. Conversely, for 𝑁𝑖 → 0, the
error will increases because the computational cost becomes expensive and we cannot take larger
𝐷. Therefore the best one is expected to have intermediate number of internal indices. In the d
dimension, identifying the best tensor representation is still an open question.

7. Summary

The TRG method is a very attractive approach as a new calculation method for lattice field
theory because it effectively works for theories with the sign problem on extremely large volume

13
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Figure 11: What is the best representation?

lattices. In this paper, I comprehensively reviewed the recent developments in the TRG approach
to quantum field theory.

For scalar fields, a finite dimensional tensor is introduced by discretizations of scalar fields.
For this, we currently use a one-dimensional quadrature method such as the Gaussian quadrature
rule for each measure. In the future, we should develop a discretization method that incorporates
the feature of quantum field theory. On the other hand, it is relatively easy to apply the TRG method
in a fermion system. The fermionic algorithm of the TRG method is called the Grassmann TRG in
which tensor index obeys an anti-commuting rule. The tensor network representation was already
obtained for general lattice fermions with a local action.

The tensor network method for gauge theory uses the character expansion. A finite-dimensional
tensor has been introduced by truncating the character expansion so far. However, in general gauge
groups including SU(3), it remained a difficult issue to numerically calculate the tensor component
concretely from the character expansion. Using a new methodology that discretizes the Haar
measure with random SU(N) fields, 2d SU(3) Yang-Mills theory was investigated by the TRG.
This method may provide hints on the problem to be solved in order to calculate QCD by the TRG
method.

Creating a TRG methods in dimensions larger than two is a difficult problem due to the
increased computational costs. In fact, the HOTRG method has a calculation cost proportional to
O(𝐷4𝑑−1). The ATRG method is currently very effective in 4 dimensions. Further improvements
are needed to reduce errors. We should look for a renormalization group method that is the best in
four dimensions. To do this, the triad TRG method may contain some good ideas.

The most difficult problem that remains would be the development of an effective TRG method
in a system with many degrees of freedom, including QCD. Further developments are needed to
establish calculation methods in finite density QCD, supersymmetric theory and quantum gravity,
and quantum calculation and real-time simulation. The TRG method will greatly develop as a new
calculation method for quantum field theory in the next decade.
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