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Measuring Higgs pair production (HH) will provide information about the Higgs self coupling,
which is key to determine the shape of the Higgs potential at higher order. The leading HH
production mode at the Large Hadron Collider is gluon gluon fusion and the sub-leading
production mode is vector boson fusion. Given the small cross section, Higgs pair production has
not yet been observed. However, competitive upper limits on the HH production cross section
and Higgs self coupling modifier κλ are set by the ATLAS and CMS Collaborations.

Searches for HH production in a final state where one Higgs boson decays to a pair of b quarks,
and the other Higgs boson decays either to two photons, two b quarks or four leptons, with the full
Run 2 proton-proton collision data set at

√
s = 13 TeV from the ATLAS and CMS experiments,

are presented. Combinations of HH searches and Higgs self coupling measurements with partial
Run 2 data are also presented.

Competitive upper limits on the HH cross section are obtained by the ATLAS and CMS HH
searches in the bb̄γγ final state. However, the CMS HH search in the bb̄bb̄ final state sets the
current most stringent observed upper limit on the HH production cross section of 3.6 times the
Standard Model expectation at 95% confidence level. The current most stringent limits on κλ are
obtained by the ATLAS HH search in the bb̄γγ final state, which sets observed (expected) limits
of −1.5 (−2.4) < κλ < 6.7 (7.7) at 95% confidence level.
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HH non-resonant and self-coupling at ATLAS and CMS

1. Introduction

Searches for Higgs pair production (HH) with full Run 2 data by the ATLAS [4] and CMS [5]
experiments in multiple final states and combinations with partial Run 2 data are presented.

2. HH → bb̄γγ

The CMS [6] and the ATLAS [7] HH → bbγγ searches use boosted decision trees (BDT)
to discriminate the HH signal from the background. To ensure sensitivity to multiple SM and
beyond SM (BSM) scenarios, the M̃X = mbb̄γγ − mbb̄ − mγγ + 2mh distribution is used together
with the BDT score to define multiple signal regions (SRs). The CMS search is optimised for both
ggF and V BF HH while the ATLAS search is optimised solely for ggF HH production. Both
searches estimate the non-resonant background from data by exploiting the Higgs mass resonance
through a fit to the mγγ invariant mass side bands. Furthermore, in the CMS search a fit to the
mbb̄ distribution is also performed. A joint maximum likelihood fit is performed to themultiple SRs.

Observed (expected) limits are set at 95% CL by both experiments on the HH cross section
and κλ. ATLAS sets upper limits of σHH

ggF+VBF < 4.1 (5.5) × σHH SM
ggF+VBF and −1.5 (−2.4) < κλ <

6.7 (7.7) as shown in Fig. 1a. The latter are the most stringent limits on the Higgs self coupling
strength modifier κλ. The corresponding CMS limits are σHH

ggF+VBF < 7.7 (5.2) × σHH SM
ggF+VBF and

−3.3 (−2.5) < κλ < 8.5 (8.2). The CMS limits on σHH
VBF and κ2V , σHH

VBF < 225 (208) × σHH SM
VBF

and −1.3 (−0.9) < κ2V < 3.5 (3.1), are shown in Fig. 1b. Limits on σHH BSM
ggF for 12 Higgs EFT

shape benchmarks and two-dimensional scans in the (κt ,κλ) and (κ2V ,κλ) planes are also performed
by CMS.
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Figure 1: Limits from ATLAS [7] and CMS [6] HH → bbγγ searches with full Run 2 data.

3. HH → bb̄bb̄

The CMS HH → bb̄bb̄ search [8] targets both ggF and V BF HH production. Higgs candi-
dates and their invariant masses (mH ) are reconstructed from the 4 b jets and events are divided
into a SR and a control region (CR) based on χ =

√
(mH1 − 125)2 + (mH2 − 120)2. The V BF HH

candidates are selected by requiring 2 additional non-b jets and a BDT trained to separateV BF from

2



P
o
S
(
L
H
C
P
2
0
2
1
)
0
7
2

HH non-resonant and self-coupling at ATLAS and CMS

ggF events is used to reduce the mis-classification of ggF events. To enhance sensitivity to both
SM and BSM scenarios, the mHH distribution, a dedicated ggF BDT and the V BF-vs-ggF BDT
distributions are used to define a total of 4 SRs. The large multi-jet background is estimated from
data and a binned maximum likelihood fit is simultaneously performed in all SRs. The observed
(expected) limits at 95% CL, shown in Fig. 2a and 2b , are σHH

ggF+VBF < 3.6 (7.3) × σHH SM
ggF+VBF ,

−2.3 (−5.0) < κλ < 9.4 (12.0) and −0.1 (−0.4) < κ2V < 2.2 (2.5).

The ATLAS HH → bb̄bb̄ search [9] targets V BF HH production as signal and therefore
considers ggF HH events as background. The strategy consists of reconstructing the leading
and sub-leading di-jet invariant masses (m2b) and defining concentric signal, validation and side-
band regions from the leading and sub-leading m2b distributions. The large multi-jet and all-
hadronic backgrounds are estimated from data through a fit in the side band region. The ob-
served (expected) limits at 95% CL, shown in Fig. 2c, are σHH

VBF < 1000 (540) × σHH SM
VBF and

−0.43 (−0.55) < κ2V < 2.56 (2.72).
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Figure 2: Limits from CMS [8] and ATLAS [9] HH → bb̄bb̄ searches with full Run 2 data.

4. HH → bb̄+leptons

TheATLAS HH → bblνlν search [10] targets ggF HH → bbWW∗, bbZ Z∗ and bbττ in a final
state with two b jets, two leptons (l = e, µ) andmissing transverse energy. Due to its larger branching
ratio, the strategy consists of using a multi-class classification Neural Network to differentiate the
ggF HH → bbWW∗ signal from the SM backgrounds. The main discriminant shown in Fig. 3a is
defined as dHH = ln(pHH/pTop+pZ−ll+pZ−ττ)where pi are the NN outputs that represent the prob-
ability of an event to belong to a class i. A counting experiment is performed using the targeted HH
decays as signal. The observed (expected) limits obtained areσHH

ggF < 40 (29)×σHH SM
ggF at 95%CL.

The CMS HH → bbllll search [11] targets the ggF HH → bbZ Z∗ in a final state with two b
jets and four leptons. The analysis strategy consists of using the 4-lepton invariant mass (m(4l)) to
define a CR for the Z + X background and a SR with m(4l) ∼ mH . For further discrimination in the
SR, a total of 9 BDTs are trained (for each data taking year and leptonic final state). The irreducible
single Higgs background is estimated from simulation and a multi-dimensional binned fit to data of
the BDT distribution, shown in Fig. 3a, is performed. The search sets observed (expected) limits
at 95% CL of σHH

ggF < 30 (37) × σHH SM
ggF and −9 (−10.5) < κλ < 14 (15.5) as shown in Fig. 3c.
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Figure 3: Discriminants and limit for the HH → bb̄+leptons searches [10], [11] with full Run 2 data.

5. Combinations

In order to increase the sensitivity, searches using complementary decay modes are combined.
The latest results of combined HH searches with partial Run 2 data from ATLAS [12] and CMS
[13] are shown in Fig. 4. The ATLAS HH combination sets observed (expected) limits at 95%
CL of σHH

ggF < 6.9 (10) × σHH SM
ggF while the CMS combination sets slightly looser upper limits of

σHH
ggF < 12.8 (22.2)×σHH SM

ggF . The ATLAS combination set limits of −5 (−5.8) < κλ < 12 (12.0),
while the CMS combination sets limits of −11.8 (−7.1) < κλ < 18.8 (13.6).
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Figure 4: Combined limits from the CMS [13] and ATLAS [12] HH searches with partial Run 2 data.

These limits can be improved by combining the single Higgs and HH searches because even
though κλ enters at tree level in HH production, it is also present for single Higgs production at
loop level giving the single Higgs cross section a dependence on κλ. The ATLAS single Higgs and
HH combination [14] combines multiple production and decay modes to set the tightest combined
limits on κλ of −2.5 (−5.1) < κλ < 10.3 (11.2). These combined limits have already been surpassed
by the limits from the individual HH → bb̄γγ and HH → bb̄bb̄ searches with full Run 2 data and
therefore even more stringent limits are expected from the combinations of the searches with full
Run 2 data.
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