
P
o
S
(
L
H
C
P
2
0
2
1
)
2
7
4

Recent progress in jet substructure calculations

Daniel Reichelta,∗

aInstitut für Theoretische Physik, Georg-August-Universität Göttingen,
Friedrich-Hund-Platz 1, 37077 Göttingen, Germany

E-mail: daniel.reichelt@uni-goettingen.de

The substructure of QCD jets is an active area of research in both theory and experiment. This talk
summarises the progress in calculations of jet substructure observables and the development of
techniques to address the theoretical challenges posed by them. As particular example, the analysis
of radiation inside jets using the Lund plane is reviewed. Fixed order and resummed calculations
including the effect of the soft drop grooming technique are discussed for the observable family
of jet angularities.

The Ninth Annual Conference on Large Hadron Collider Physics - LHCP2021
7-12 June 2021
Online

∗Speaker

© Copyright owned by the author(s) under the terms of the Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0). https://pos.sissa.it/

mailto:daniel.reichelt@uni-goettingen.de
https://pos.sissa.it/


P
o
S
(
L
H
C
P
2
0
2
1
)
2
7
4

Recent progress in jet substructure calculations Daniel Reichelt

Introduction. Since the start of the Large Hadron Collider (LHC), numerous experimental as
well as theoretical studies have investigated, and significantly improved our understanding of, the
distribution of radiation inside QCD jets. This is an important task, on the one hand to test and
challenge our ability to accurately make QCD predictions, and on the other hand to find new ways
to mitigate and suppress the background produced by QCD for example to searches for new physics.
Here we will discuss some examples from the recent past, for a recent review aiming at a more
inclusive picture see for example [1].

The Lund Plane. A useful representation of the QCD radiation phase space is the so called Lund
plane [2]. An example is given in Fig. 1. The vertical axis represents a hardness measure like the
transverse momentum kt of the radiation, while the horizontal axis marks the angular separation
by some suitable measure ∆, with the diagonal line in Fig. 1 representing the limit collinear to the
jet axis. At leading logarithmic accuracy, QCD radiation is expected to be uniform in this plane. It
has been used since its introduction until today for the development of parton showers [3, 4] and
resummed calculations [5]. Non-trivial effects beyond the leading logarithms are associated with
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Figure 2: (a) The average primary Lund plane density, ⇢, for jets clustered with the C/A

algorithm and R = 1 having pt > 2 TeV and |y| < 2.5, in a simulated QCD dijet sample.

(b) Schematic representation of the di↵erent regions of the Lund plane.

factor in ⇢ is equal to 2 and so the density of primary Lund emissions is just proportional

to the strong coupling,

⇢ ' 2↵s(kt)CF

⇡
, (� ⌧ 1, z̄ ⌧ 1) , (2.6)

The upper diagonal edge in the figure is a consequence of the kinematic limit, kt < 1
2pt,jet�.

At low scales ↵s(kt) gets large, which accounts for the bright red band around kt = 1 GeV.

In this region the Lund plane density is not amenable to perturbative calculation. Equiv-

alently Eq. (2.5) receives large corrections from non-perturbative terms proportional to

powers of kt/⇤QCD. At values of � ⇠ 1, initial state radiation (ISR) and multi-parton

interactions (MPI/UE) contribute to increasing the density, which is reflected in the con-

tours of constant colour bending upwards to the left. The di↵erent regions are outlined

schematically in Fig. 2b.

Beyond leading perturbative order, several further physical e↵ects contribute to the

structure of the Lund plane. The upper boundary gets smeared out because of degradation

of the leading subjet energy as one declusters the jet.3 The leading subjet can also change

3This smearing does not occur if one examines ⇢̄(�,), from Eq. (2.4), since  is defined in terms of

the local z fraction of the emission, which does not depend on earlier splittings at larger angles (while kt

does). However, instead the non-perturbative boundary gets smeared, as does the relation between a given

location on the plane and the invariant mass of the pair being declustered.

– 6 –

Figure 1: Primary regions of the Lund plane. Figure taken from [6]

different regions in the Lund plane. At larger kt the physics is dominated by perturbative effects
that would usually be taken into account, in addition to fixed order calculations, by resummed
expressions or parton shower simulations. At smaller transverse momenta, non-perturbative effects
take over. A recent development is the utilisation of the Lund plane in measurements. This was
proposed in [6] with concrete calculations carried out in [7]. Lund plane representations of a jet
can be obtained by declustering the jet constituents with the Cambridge/Aachen algorithm. This
measurement prescription has been realised by the LHC experiments [8, 9]. The insights into the
physical origin of radiation in different areas of the Lund plane can be used to construct optimal
observables for signal and background discrimination for Standard Model processes [10].

Soft Drop grooming. The contributions at smaller kt scales, like hadronisation and the underlying
event (UE), can not be calculated from first principles but need to be modelled. A variety of tools
is available to reduce the impact of such corrections to jet observables. The example that shall be
examined here is the soft drop grooming procedure [11]. Similar to the measurement prescription
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of the Lund plane, a jet with radius R is declustered with the Cambridge/Aachen algorithm. The
last splitting is undone and it is checked if the two sub-jets i, j satisfy the soft drop condition

zg =
min(pT ,i, pT , j)

pT ,i + pT , j
> zcut

(
∆Ri j

R

)β
(1)

where pT ,i is the transverse momentum of jet i and ∆R is the usual separation between i and j in
the plane of rapidity y and azimuth φ, ∆R2

i j = (yi − yj)
2 + (φi − φ j)

2. The effect of the groomer
can be adjusted with the parameters zcut and β. The focus here will be on the grooming mode
β ≥ 0. In terms of the emission of soft gluons from a jet, soft drop cuts out precisely the soft
wide-angle corner of the phase space marked as "UE/MPI" in Fig. 1. Analytical understanding
of the behaviour of this groomer can be gained by examining the pT fraction zg and the angular
separation θg = ∆Ri j/R of the two sub-jets that satisfy the criterion in Eq. (1). These obervables
were first analysed in [11, 12], and calculated at next-to-leading logarithmic accuracy in [13, 14].

With the sensitivity of an object to non-perturbative effects reduced, it is possible to calculate
for example jet-shape type observables from the constituents that survive grooming. This principle
can be extended to event shapes in electron-positron [15, 16] and proton-proton [17] collisions. The
resulting observables can feature an impressively large range where the perturbative calculations
are dominated by the logarithmic behaviour, but non-perturbative effects are still negligible. This
has been applied to the groomed jet mass, which was measured by the ATLAS [18] and CMS [19]
experiments, and successfully compared to calculations at various accuracies [20–23].

Jet Angularities An example of a jet observable that shall be examined closer here is the family
of jet angularities, defined on the constituents of a jet J, that might have been subject to the soft
drop grooming procedure described above, by

λκα =
∑
i∈J

(
pT ,i
pT ,J

)κ (
∆Ri

R

)α
. (2)

Here ∆Ri denotes the angular distance of the jet constituent i with respect to the jet axis. In the
case where α ≤ 1, it is convenient to choose this to be the winner-takes-all axis. Several values of
κ are conventionally studied experimentally, but since out of these choices only κ = 1 is infrared
safe, the discussion here will be restricted to this choice. Angularities are among the standard
observables considered in the context of quark-gluon discrimination studies in recent years [24–28]
that have been a driver for developments in theory and modelling [29–32]. Recent studies have
also considered tagging initial state flavours using angularities of final state jets [27, 33]. Common
choices for α are α ∈ {0.5,1,2}. Measurements at the LHC are presented for example in [34–36].
Theoretical predictions are available in a variety of frameworks [37–43]. Calculations are also
performed for related observables at lepton colliders [5, 44, 45] and in deep inelastic scattering
[46, 47]. A recent calculation is the one presented in [43], closely following the precisemeasurement
prescription in [36] for the groomed and ungroomed angularities measured on the leading anti-kt
jet in Z+jet production. It is based on the CAESAR formalism [5] for NLL resummation and uses
the automated implementation [48, 49] available within the SHERPA [50, 51] framework. The
extension to soft drop groomed observables was introduced in [17]. The fixed order calculation at
NLO accuracy is performed using COMIX [52] in conjunction with OPENLOOPS [53] and RECOLA
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Figure 2: Jet angularity with κ = 1 and α = 1 of the leading jet in pp→ Z + jet production at
√

s = 13 TeV.
Left: Perturbative prediction at NLO (green) and NLO+NLL′ (black) accuracies for ungroomed jets. The
face colours illustrate the contributions for gluon (red) and quark (blue) jets. Right: Predictions for groomed
jets at NLO+NLL′ (black) including non-perturbative corrections obtained from Monte Carlo simulations,
compared to the distribution obtained from SHERPA at MEPS@NLO. Figures are taken from [43].

[54, 55]. A flavour sensitive matching scheme [17, 56] allows to achieve overall NLO+NLL′

accuracy. The dependence of the soft wide-angle contribution proportional to powers of the jet
radius R is accounted for using expressions taken from [57], and non-global logarithms are computed
numerically with the algorithm first introduced in [58].

The left plot in Fig. 2 displays this result for the α = 1 angularity, together with the NLO
fixed order prediction. The effect of including the resummation is visible over the full range of
the observable. This is related to the large LO corrections to the cross section. For reference, it
is illustrated how the quark and gluon jet contributions stack up to the full matched result. While
the large angularity region receives a significant contribution from gluon jets, the soft tail of the
distribution is entirely dominated by quark jets. The right hand plot in Fig. 2 compares the matched
result to a parton shower prediction obtained from SHERPA at MEPS@NLO accuracy [59], again
for the α = 1 angularity but including the effect of grooming. Non-perturbative corrections are
obtained as averaged ratios of the parton- and hadron-level predictions of SHERPA as well as HERWIG

[60, 61] and PYTHIA [62]. Within uncertainties, parton shower and resummation show the same
behaviour in this example. This statement is however dependent on the choice of α, in particular in
regions where shower cutoff effects become important.

Conclusion The substructure of jets in hadron production is an active field of research with
an interesting interplay between experiment, theory, the developments of analysis methods and
modelling in Monte Carlo generators. Both resummed calculations as well as parton shower
simulations are crucial to the current understanding. Studying their relation can be expected
to play an important role in the future [63–65]. In terms of analytic calculations, a higher order
understanding of non-global logarithms [66] as well as transition point effects in the case of groomed
observables [67] appears desirable.
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