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1. Introduction

We are spoiled for choices when it comes to BSM tools. For many years the community has
developed tools for every aspect of BSM physics, from various computations of observables, to
abstract level tools able to handle the full Lagrangian of a theory. Due to the large amount of
software available, in this conference article I will only describe a selection of tools and their recent
developments. I will focus on tools for the recasting of LHC searches, dark matter (DM) tools,
statistical inference tools and Lagrangian-level tools.

2. Reinterpretation of LHC searches

The reinterpretation of BSM searches has been a profilic field of study in particle physics.
Significant advances have beenmade in the last few years in the interaction between the experimental
and theoretical communities, and the exchange of information between them is at its highest,
especially after the release of simplified and full likelihoods by CMS and ATLAS, respectively [1].
This has had profound positive effects on the whole community as well as the physics outcomes, as
it has helped with the long-term preservation of the results and provides motivation for the design
of new analyses. Consequently, many recasting tools have been developed, following two different
approaches: the Simplified Models approach, or the Fast Simulation approach.

The Simplified Models approach tackles the issue of recasting by decomposing a given model
into simplified model topologies and comparing the predicted cross section times branching ratio
with that reported by the experiments [2]. As it does not require any simulation of collisions,
this approach is extremely fast and perfectly suitable for large parameter fits. The prominent tool
that implements this approach is SModelS, which is in fact responsible for pioneering the idea [2].
SModelS currently contains the largest database of implemented analyses in the community, with
over 100 run I and II available analyses. With its latest version, SModelS can be interfaced with the
full likelihoods provided by the ATLAS experiment [3]. Another notable tool that implements the
Simplified Model approach is DarkCAST, a recasting tool for dark photon searches [4].

On the other hand is the Fast Simulation approach, which requires to perform a Monte-Carlo
simulation of the hard scattering process first, then drag the generated events through some form
of detector modelling and lastly pass them through an event analysis framework. There are many
available event analysis frameworks, some of themwith native detectormodelling. A non-exhaustive
list of these include MadAnalysis 5 [7–12], which can be used with a detector simulation or transfer
functions and contains around 40 run I and II analyses; CheckMATE [13, 14], which contains
over 50 run I and II analyses, and was recently extended to support long-lived particle searches in
addition to prompt particle searches; ColliderBit [15], which includes its own detector modelling in
the form fast 4-vector smearing (Buckfast), and has a database of around 40 analyses, from runs I
and II1; and Rivet [17, 18], which has currently “only” 30 BSM analyses, but boasts a huge library
of SM analyses, upwards of 800. In fact, it has been shown that SM inclusive measurements also set
strong constraints on new physics, and the tool Contur has been developed for this purpose [19–23].
A comparison of the performance of these tools for a specific CMS search for supersymmetric
(SUSY) particles [24] was performed [25] and strong agreement was seen across all included tools.

1ColliderBit is part of the GAMBIT framework, but it will soon be released as a standalone package
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3. Dark Matter

Searches for DM are a strong component of the physics agenda of the LHC experiments, but
the strongest constraints on DM models arise often from direct and indirect detection, as well as
from the relic density (RD) of DM, and thus many tools have been developed over the years for that
purpose2. In recent times, there is a tendency towards the development of model-independent tools,
able to constrain a large variety of BSM models. In addition, many existing and new tools attempt
a comprehensive approach to constraints of DM, intending to simultaneously provide constraints
from RD, direct and indirect detection. The most employed comprehensive tools developed by the
community are DarkSUSY 6 [27, 28], recently expanded to compute the RD beyond the standard
kinetic equilibrium; MicrOMEGAs [29–35], whose most recent upgrade included computations of
freeze-in RD; MadDM [36–39], part of the MadGraph toolchain; and SuperISO Relic [40–42],
which is widely used for SUSY models.

Even though comprehensive tools can cover all aspects of DMconstraints, somemore dedicated
tools are better suited to compute a single constraint with higher accuracy. In the case of constraints
from direct detection (DD), the front runner isDDCalc [43, 44], which contains the largest collection
of DD experiments to date, and can be used for complete as well as effective DM models, with RG
evolution provided by DirectDM [45, 46]. In the indirect direction frontier the amount of available
tools is too large to recount here. A short list of selected tools include Capt’n General [47], which
imposes constraints on DM capture in the Sun, nulike [48, 49], which calculates constraints from
the DM annihilation to neutrinos, and gamLike [43], which deals with DM annihilation to γ-rays.
Lastly one can impose constraints on DM models from cosmological observations. In particular,
the energy injected into the Cosmic Microwave Background from DM annihilations in the early
Universe can be computed with DarkAges [50], part of the ExoCLASS branch of CLASS [51].

4. Inference and Sampling

It has long been the goal of many particle theorists to assess the validity of BSM models in
light of data. However, the vast quantities of data produced by the experiments, and the increasingly
large parameter spaces of the models, makes this a difficult task. The common practices of
overlaying exclusing regions and sampling the parameter space using random or grid samplers
are insufficient and much information is lost along the way. Composite likelihoods that keep all
the information about experimental data, smart sampling strategies to explore large and intricate
parameter spaces [52], and a rigorous treatment of statistics are critical features that significantly
improve and simplify this task [53]. And for this purpose many global fitting tools have been
developed that include those features and that are targeted, though not exclusively, to BSM models.

Bayesian inference has been a staple in astrophysics for many years, and there are many public
tools developed for that purpose, but in the field of BSM phenomenology the tendency has been
to develop private fitters for specific purposes, e.g. flavour fits, neutrino oscillations, SUSY, etc.
Only in recent years various public inference tools have been released. The first “wave” of publicly
available global fitters, such as Fittino [54], SuperBayes [55] orEasyScanHEP [56], were developed
to fit various SUSY models to LHC data, and some are still in use today.

2A thorough review of many DM tools can be found in [26]
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The revolution in the field of BSM inference came with the advent of model-independent
tools. The front-runner for SM fits is HEPFit [57], built upon a Bayesian Markov chain Monte
Carlo, which includes a vast library of electroweak precision, Higgs and flavour observables,
and can also work with BSM models [58, 59]. Nevertheless, the indisputable leader of BSM
inference studies is the GAMBIT tool [16, 60]. GAMBIT contains a huge library of likelihoods
and observables for collider physics [15], dark matter [43], flavour [61], precision observables [62],
neutrino physics [63] and cosmology [64], as well as an extensive database of models and sampling
strategies, both frequentist and Bayesian [65]. GAMBIT has been employed in studies of a large
variety of BSM modes, including SUSY models [66–68], Higgs-portal DM models [44, 69, 70],
EFT DM models [71], axion and axion-like particle models [72, 73], models with right-handed
neutrinos [63], fits of neutral flavour anomalies [74] and cosmological fits of neutrino masses [75].

5. Lagrangians and Model Building

In addition to the software developed for the computation of observables, there is a small
collection of tools that go one step further, and attempt to bridge the gap between the full Lagrangian
of the BSM theory and the required amplitudes and cross sections. Some of these tools, such as
FeynRules [76, 77], SARAH [78–80] and LanHEP [81–83], compute the Feynman rules directly
from the Lagrangian, while others, such as FeynArts/FormCalc [84–86] or CalcHEP [87], use
those to compute the required amplitudes. Although widely used, the main disadvantage of most of
these tools is that they are written in Mathematica, which is a proprietary software framework and
it is notably slower than other interpreted or compiled languages. Very recently a new tool has been
released, MARTY [88], a fully open-source framework that uses symbolic computations in C++ to
obtain amplitudes and cross sections from the Lagrangian for any BSM theory. Finally, the last step
in the BSM toolchain is to automatically connect the amplitudes, cross sections, etc, obtained by the
Lagrangian-level tools, with the calculation of likelihoods and observables. This step is most often
done by hand, by manually embedding the code or expressions outputted by the above tools where
needed. Fortunately, an automatic integration of this step can now be achieved with GUM [89]. By
interfacing with SARAH and FeynRules, GUM extracts all information about particles, parameters
and expressions, auto-generates code in GAMBIT, and uses it to impose DM, collider and vacuum
stability constraints. Using both GUM and GAMBIT one can start with a Lagrangian and end with
a complete likelihood analysis without writing a single line of code.

6. Summary

In this conference article I have introduced a selection of tools for BSM physics and described
their most recent developments. The state of the communication between the theory and experi-
mental communities is currently at its best, and that improves the quality and relevance of the results
from recasting tools. There is a community trend towards the development of model-independent
tools, as it is the case for some of the DM comprehensive tools, as well as the leading global
fitting frameworks, HEPFit and GAMBIT. And lastly, with MARTY and GUM we have managed
to complete the BSM toolchain, from Lagrangian to likelihoods, using only open-source software.
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