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The past decades have witnessed the deployment of a new generation of cosmic ray (CR) obser-
vatories with unprecedented sensitivity and complexity, pushing towards ever-higher energies. To
face the challenges of the multi-TeV domain, such instruments must be accompanied by equally
powerful analysis techniques, able to exploit as much information as available. For example,
the machine learning tool set may provide the needed techniques. We present a neural network
optimised for the identification of multi-TeV electrons on DAMPE, a calorimetric spaceborne
CR observatory with among other objectives the measurement of cosmic electrons up to 10 TeV.
This constitutes a particularly challenging endeavour due to both the soft electron spectrum and
the large proton background. The developed neural network significantly outperforms the more
traditional cut-based approach, achieving a much lower proton contamination in the multi-TeV
domain with a high signal efficiency, and retains its accuracy when transposed from Monte Carlo
to real data.
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1. Introduction

The Dark Matter Particle Explorer (DAMPE) is a spaceborne cosmic ray detector and γ-ray
observatory that has been in stable operations since December 2015 [1]. It carries four subdetectors
to measure the energy, absolute charge, and direction of an incoming particle. Its deep Bismuth
Germanium Oxide (BGO) calorimeter serves as the primary trigger and for particle identification.
Among its main scientific objectives is the precise measurement of cosmic electron+positron (CRE)
spectrum up to 10 TeV, a region where several models propose observable features [2]. In this paper,
we present a deep learning method for CRE identification on DAMPE. The new method was the
object of a recent publication [3] and has been updated since then.

2. Electron identification

The DAMPE detector is able to measure the absolute electric charge |Z | of incoming cosmic
rays, allowing to identify and reject ions from Helium up, and the very few γ-rays in orbit at TeV
energies. In the absence of a magnet however, the sign of the electric charge is unknown. Therefore,
identifying electrons requires to reject the other |Z | = 1 particle in space: protons.

Electrons and protons react differently with matter. When interacting inside the BGO calorime-
ter, the former trigger electromagnetic showers, which are typically shorter and narrower than the
hadronic showers produced by the latter. Clasically, one can try and quantify this topological
difference. The DAMPE experiment uses an observable called ζ [4] (Figure 1) which is the product
between shower width and shower depth. This variable was successfully used for the measurement
of the CRE spectrum up to 4.6 TeV [5]. However, ζ loses discrimination power towards highest
energies and a more powerful identification method is required.

Deep neural networks [6] have the potential of better exploiting the correlations between
topological variables and to extract more information from DAMPE data. We therefore propose a
neural network classifier for electron identification.

A neural network is a stack of densely connected mathematical units called neurons, that apply
a non-linear activation function on the linear combination of their input. The weights of each neuron
connection is determined during the training procedure, where the network is exposed to carefully
chosen data. Once the network is fitted to the data, it can take decisions such as in our case the
identity of a cosmic ray.

We train a neural network on Monte Carlo (MC) data simulated with the Geant4 package to
represent typical cosmic ray interactions inside DAMPE. The training set covers the full energy
range of an expected CREmeasurement, with 230’000 events equally distributed between signal and
background. The input variables are selected first to be representative of the interaction topology,
and second to yield reliable, well-simulated results: the energy deposited in the bottom 12 of the
14 layers of the calorimeter, the RMS of the deposition in the same layers, the angle of trajectory,
the total energy, the energy along the track in the tracker, and the classical ζ observable.

The network itself is a simple 4-layers dense neural network, with 300-150-75-1 neurons
respectively and the ReLU activation function in the hidden layers. It is trained for 50 epochs
following the Adam optimizer, using the Keras and Theano libraries on Nvidia Titan X video cards.
For more details, see reference [3].
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Figure 1: Example distribution of the classical electron identifier ζ , on MC and real data in the 1 to 3 TeV
reconstructed energy range.

10 5 0 5 10 15
Neural network output score

0

100000

200000

300000

400000

500000

600000

Ev
en

t c
ou

nt

24.0-154.9 GeV reconstructed energy
MC e
MC p
MC total
Flight

10 5 0 5 10 15
Neural network output score

0

2000

4000

6000

8000

10000

12000

14000

Ev
en

t c
ou

nt

154.9-1000.0 GeV reconstructed energy
MC e
MC p
MC total
Flight

10 5 0 5 10 15
Neural network output score

0

100

200

300

400

500

600

700

800

Ev
en

t c
ou

nt

1000.0-10471.3 GeV reconstructed energy
MC e
MC p
MC total
Flight

Figure 2: Neural network response distribution comparing MC and real data, on 3 energy bins covering the
expected range of DAMPE measurement.

3. Performances

The neural network response distribution is displayed in Figure 2, comparing MC electron,
MC proton and real data. MC was scaled to the data in the following way: a control region is set in
the range [−12;−4], where the integral of MC proton and data are computed. Their ratio serves as
the scaling factor to create a background template. Then, said template is subtracted to the flight
data to have a "background-less" template. A signal region [2; 100] is set, and the ratio of integrals
yields the electron scaling factor.

One sees that the neural network separates nicely electrons and protons, the former having
positive values and the latter negative values. Monte Carlo and real data matching is excellent at
all energies, without the need for any smearing although with a small shift of +0.2 for MC protons.
Therefore the classifier is reliable and generalises well the physics (instead of being biased towards
simulation artifacts). Suchmatching enables the use of baseline methods for background evaluation.

It should be noted that Figure 2 differs from typicalmachine learning classification distributions.
The network was indeed modified by removing its output activation function to have a more
convenient shape with background interpolation methods in mind. The performances are not
affected as the transformation is bijective. Details in Reference [3].
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To assess the performances of the neural network, we define three key metrics:

Signal efficiency =
Ne−,pass

Ne−
(1)

False positive rate =
Np,pass

Np
(2)

Background contamination =
Np,pass

Np,pass + Ne−,pass
(3)

with N the number of events, and pass indicating whether they survive the set discrimination
threshold. The first two metrics have the advantage of being blind to the relative fraction of
electrons to protons in orbit and can therefore be estimated purely on MC. The last metric requires
some fitting to real data (Figure 2) but better assesses the final performances of the classifier in a
physical analysis.

Figure 3 shows the evolution of performances with respect to energy, comparing the new
method with the classical one ζ . The left panel is only MC data. For a fair assessment, at every
energy we set a discrimination threshold such that both classifiers achieve the same signal efficiency
(95%), and we record the false positive rate. It can be seen that the neural network achieves a
significantly better proton rejection at all energies, especially at the extremes. Above 10 TeV, it
reaches 8 times lower false positive rate1.

The right panel of Figure 3 is a fixed-cut analysis, that uses real DAMPE data to assess the
background contamination. The neural network efficiency exhibits very little dependency with
energy, by opposition to ζ dropping from 98% down to 50% at 10 TeV. At highest energies, the
neural network achieves almost twice higher efficiency for the same background contamination.
It should be noted that, while the retained cut allows a higher efficiency for ζ at low energies, it
is at the cost of higher background: on this panel, direct comparison is thus only fair when their
respective background equalises, above 4 TeV.

In conclusion, the developed neural network classifier exhibits excellent performances, up to 8
times better than the classical method. It is also highly reliable thanks to a near identical response
on Monte Carlo and on real data. Such features allow us to better exploit the wealth of information
recorded by the DAMPE experiment, and pave the way towards a measurement of the CRE spectrum
even beyond 10 TeV.
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Figure 3: Performances of the neural network (NN) classifier against the classical method ζ . Left: Moving-
cut analysis. The discrimination thresold is dynamically set to have 95% signal efficiency on each energy bin,
and the false positive rate is measured. Right: Fixed-cut analysis, showing the evolution of signal efficiency
and background contamination with energy.
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