PoS - Proceedings of Science
Volume 398 - The European Physical Society Conference on High Energy Physics (EPS-HEP2021) - T02: Cosmology
Cosmological implications of EW vacuum instability: constraints on the Higgs-curvature coupling from inflation
A. Mantziris
Full text: pdf
Pre-published on: January 12, 2022
Published on: May 12, 2022
Abstract
The current experimentally measured parameters of the Standard Model (SM) suggest that our Universe lies in a metastable electroweak vacuum, where the Higgs field is prone to vacuum decay to a lower state with catastrophic consequences. Our measurements dictate that such an event has not taken place yet, despite the many different mechanisms that could have triggered it in our past light-cone. The focus of our work has been to calculate the probability of the false vacuum to decay during the period of inflation and use it to constrain the last unknown renormalisable SM parameter $\xi$, which couples the Higgs field with space-time curvature. More specifically, we derived lower $\xi$-bounds from vacuum stability in three inflationary models: quadratic and quartic chaotic inflation, and Starobinsky-like power-law inflation. We also took the time-dependence of the Hubble rate into account both in the geometry of our past light-cone and in the Higgs effective potential, which is approximated with three-loop renormalisation group improvement supplemented with one-loop curvature corrections.
DOI: https://doi.org/10.22323/1.398.0127
How to cite

Metadata are provided both in "article" format (very similar to INSPIRE) as this helps creating very compact bibliographies which can be beneficial to authors and readers, and in "proceeding" format which is more detailed and complete.

Open Access
Creative Commons LicenseCopyright owned by the author(s) under the term of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.