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The current experimentally measured parameters of the Standard Model (SM) suggest that our
Universe lies in a metastable electroweak vacuum, where the Higgs field is prone to vacuum decay
to a lower state with catastrophic consequences. Our measurements dictate that such an event
has not taken place yet, despite the many different mechanisms that could have triggered it in our
past light-cone. The focus of our work has been to calculate the probability of the false vacuum
to decay during the period of inflation and use it to constrain the last unknown renormalisable
SM parameter ξ, which couples the Higgs field with space-time curvature. More specifically, we
derived lower ξ-bounds from vacuum stability in three inflationary models: quadratic and quartic
chaotic inflation, and Starobinsky-like power-law inflation. We also took the time-dependence
of the Hubble rate into account both in the geometry of our past light-cone and in the Higgs
effective potential, which is approximated with three-loop renormalisation group improvement
supplemented with one-loop curvature corrections.

*** The European Physical Society Conference on High Energy Physics (EPS-HEP2021), ***
*** 26-30 July 2021 ***
*** Online conference, jointly organized by Universität Hamburg and the research center DESY ***

∗Speaker

© Copyright owned by the author(s) under the terms of the Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0). https://pos.sissa.it/

mailto:a.mantziris18@imperial.ac.uk
https://pos.sissa.it/


P
o
S
(
E
P
S
-
H
E
P
2
0
2
1
)
1
2
7

Vacuum decay ξ-constraints from inflation Andreas Mantziris

1. Introduction

In 2012, the last missing particle of the Standard Model (SM) of particle physics, the Higgs
boson, was observed in the Large Hadron Collider at CERN, henceforth establishing firmly the
validity of the SM as a self-consistent theory of fundamental particles and their interactions. The
SM has famously provided predictions about observables, which agree with experimental results to
many decimal places and therefore render it as the most successful physical theory so far. Moreover,
the Higgs boson has a number of interesting characteristics that may have allowed it to affect the
evolution of the Universe [1]. In the context of the SM, the eponymous boson is the excitation of the
Higgs field that permeates space-time and via its coupling to matter fields, it generates their masses.
This is famously known as the Higgs mechanism and it results from the spontaneous symmetry
breaking of the SU(2) × U(1) symmetry of the electroweak (EW) force into electromagnetism’s
U(1) symmetry, due to the Higgs’ non-zero vacuum expectation value (vev) of v ≈ 246 GeV.

The experimentally measured masses of the SM particles lie in a range, where the Higgs self-
interaction λ does not diverge before the Planck scale, as it runs with the energy scale µ [2]. As we
can see in figure 1, the four-point coupling is a smooth function, without any poles or discontinuities
all the way up to the high energy scales beyond 1015 GeV. This implies that the SM might be a
consistent minimal model that could describe our very early Universe until quantum gravity effects
become significant [3]. The running of λ depends on the SM particles’ masses, however the Higgs
and the top quark, being the heaviest of each kind, dominate their respective contribution.

Figure 1: Running of the Higgs self-interaction coupling, where the shaded regions correspond to 3σ
variance due to the uncertainty in the measurement of the top quark mass mt . [1]

Furthermore, for most of the curves shown in figure 1, where the coloured bands emphasize
the uncertainty in the measurement of mt , it is evident that the self-interaction switches sign beyond
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approximately 1010 GeV. This means that the famous quartic Higgs potential

VH (h, µ) =
λ(µ)

4
h4 (1)

will “turn” and develop a second, lower vacuum state, separated by a potential barrier, as depicted in
figure 2. Because the Higgs field is a quantum field, there is always a finite and non-zero probability
for the field to tunnel through the barrier, on top of the classical fluctuations that could excite it above
it. This renders the current EW vacuum state, that the Higgs resides in, a metastable one, which has
survived throughout our cosmological history, despite the many different mechanisms that could
have triggered its decay. However, it is important to note that we cannot rule out the absolute
stability of the EW vacuum yet, as the uncertainty in the measurement of mt is still significant.

Figure 2: Vacuum decay for a double well potential of a scalar field φ, from a metastable vacuum to its true
vacuum state via quantum tunnelling, thermal fluctuations, or a combination of both. [1]

2. Vacuum decay in the early universe

The problem with a lower ground state at high field values, lies in the fact that our Universe
would, at the very least, look very different because the masses of all particles would be different. In
addition, the violent process of the decay itself, induces the nucleation of bubbles of true vacuum,
which for all practical purposes within the SM are assumed to contain a singularity [4]. Therefore, as
they rapidly expand after formation with velocity close to the speed of light, they devour everything
in their path without warning. A vacuum decay event would have catastrophic consequences for our
false vacuum Universe and hence, the observation of its metastability allows us to infer something
about fundamental physics. This follows from the argument that there could not have been any
bubbles in our past light-cone, otherwise they would have already devoured us and the Higgs vev
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would not be at the EW scale. This means that the probability for the formation of zero bubbles has to
be significant enough, P(N = 0) ∼ O(1). Because these nucleation events are rare, their probability
follows a Poisson distribution, which is proportional to e−⟨N⟩, where ⟨N⟩ is the expectation value
of the number of true vacuum bubbles. Therefore, there is an observational requirement on their
expectation value that ⟨N⟩ ≤ 1, which allows us to place constraints on fundamental physics.

The aforementioned expectation value is a product of the decay rate Γ and the space-time
volume element dV, integrated over our past light-cone

d⟨N⟩ = ΓdV ⇒ ⟨N⟩ =
∫

past
d4x

√−gΓ(x) . (2)

Thankfully, the decay rate is so low today, that the lifetime of our metastable vacuum is longer than
the age of the Universe [5]. However, there could have been significantly higher rates in the early
Universe, and thus we are motivated to study vacuum decay during the period of cosmological
inflation. With the seminal work of [6] and [7] among others, classical solutions to the decay
process from false to true vacuum were found. They are called instantons and in our case, where the
inflationary Hubble rates are high, the Coleman-de Lucia instanton approaches the much simpler
Hawking-Moss (HM) instanton [8] with action difference and decay rate given respectively by

BHM(R) ≈ 384π2∆VH

R2 , ΓHM(R) ≈
(

R
12

)2
e−BHM(R) , (3)

where R is the Ricci scalar and ∆VH = VH(hbar) −VH(hfv) is the height of the barrier separating true
from false vacuum (fv) in the Higgs potential VH .

For this inflationary context, it is useful to express the integral (2) in terms of the number of
e-foldings of inflation N = ln (ainf/a(η)), where ainf is the scale factor at the end of inflation, as

⟨N⟩ = 4π
3

∫ Nstart

0
dN

(
ainf (η0 − η (N))

eN

)3
Γ(N)
H(N) , (4)

where η0 is the conformal time today, and H is the Hubble rate. We are integrating backwards in
time, from the end of inflation set at Ninf = 0 towards its beginning at Nstart, for a duration of a
least 60 e-foldings according to observations. By imposing the requirement that ⟨N⟩ ≤ 1, with the
minimal assumption that Nstart = 60, we can constrain the remaining free parameter in (4).

In this case, it is the non-minimal coupling ξ, which couples the Higgs field h with space-
time curvature R in the Higgs potential, and it enters the calculation via the potential as described
in section 3. The significance of constraining ξ comes from the fact that it is the last unknown
renormalisable parameter of the SM, as it cannot be probed with accelerator experiments, because
space-time is not curved enough. On the other hand, space-time was significantly more curved
in the early Universe and thus, studying the metastability of the EW vacuum during inflation can
provide constraints that are orders of magnitude stronger than other methods [9].

3. The effective Higgs potential in curved space-time

It is necessary to embed the SM in a curved background as we are studying the early Universe.
Therefore, besides the characteristic quartic term of the Higgs potential, curvature effects also enter
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at tree-level via the non-minimal coupling ξ [10], resulting in the potential given by

VH(h, µ, R) =
ξ(µ)

2
Rh2 +

λ(µ)
4

h4 , (5)

where we have made explicit the scale dependence of the couplings. Beyond tree-level, curvature
effects enter via the loop corrections as well. If we include Minkowski terms to 3-loops and
curvature corrections in de Sitter (dS) space at 1-loop, the potential reads

VH(h, µ, R) =
ξ(µ)

2
Rh2 +

λ(µ)
4

h4 +
α(µ)
144

R2 + ∆Vloops(h, µ, R) , (6)

where the α-term contains purely gravitational terms calculated in dS, that are radiatively generated
in curved space proper renormalisation. The loop contribution is an extended sum over all degrees
of freedom of the SM

∆Vloops =
1

64π2

31∑
i=1

{
niM4

i

[
log

(
|M2

i |
µ2

)
− di

]
+

n′
iR

2

144
log

(
|M2

i |
µ2

) }
, (7)

where Mi refers to each effective mass with its curvature correction, as presented in detail in [11].
We can simplify the potential by removing the “unphysical” µ-dependence, using Renormali-

sation Group Improvement (RGI). This method provides an approximation for the scale choice, by
choosing the RG scale µ = µ∗(h, R) so that the loop correction vanishes, i.e. ∆Vloops(h, µ∗, R) = 0.
This is a numerically heavy calculation, where we have to take into account the entirety of the SM
particle spectrum and the running of all couplings, with the accompanying pole-matching [12] and
β-functions [13], resulting finally in a function for µ∗ that cannot be written analytically. In the end,
we have managed to obtain the state-of-the-art RG improved effective Higgs potential given by

VRGI
H (h, R) = ξ(µ∗(h, R))

2
Rh2 +

λ(µ∗(h, R))
4

h4 +
α(µ∗(h, R))

144
R2 . (8)

4. Results

Ultimately, we have all the ingredients to complete our calculation that provides lower bounds
on the Higgs curvature coupling. First, we evaluate the barrier height ∆VH using (8), in order to
compute the decay rate (3). Afterwards, given an inflationary model with potential V(ϕ) for the
inflaton field, we can calculate, without any slow-roll approximation, the cosmological quantities
contained in the integral (4), i.e. the comoving radius of the past light-cone η0 − η(N), H(N) and
ainf . Finally, by imposing ⟨N⟩ ≤ 1 on the integral, we can constrain ξ from below as ξ ≥ ξ⟨N⟩=1.

The lower bounds for quadratic inflation V(ϕ) = 1
2 m2ϕ2, quartic inflation V(ϕ) = 1

4λϕ
4, and

Starobinsky-like [14] power-law inflation V(ϕ) = 3
4α

2M4
P

(
1 − e−

√
2
3

ϕ
MP

)2
are shown in figure 3.

Because the non-minimal coupling is a running parameter, we have bounded its value at the EW
scale ξEW = ξ(µEW), while also showing the effect of the uncertainty in the top quark mass mt . It
is important to note that the range of validity of our approach is limited by two factors, which are
illustrated by the black horizontal and vertical lines at the lower left corner of figure 3. Firstly, the
vertical, dashed line denotes the lightest the top quark can be, that still results in a self-coupling λ
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that turns negative as it runs, which therefore leads to the development of a second vacuum state.
Hence, for smaller masses, the EW vacuum is absolutely stable and therefore it is not possible to
use this analysis that assumes metastability. On the other hand, the vertical, dotted line depicts the
minimum value for which ξ(µ) will remain positive as it runs. Below this threshold, the first term
of (8) switches sign during its run, with the vacuum being potentially destabilised. As our analysis
did not account for this possibility, the curves terminate at this line.

Figure 3: Bounds on the curvature coupling at the EW scale with varying top quark mass for three inflationary
models. The vertical orange line and its bands stand at the central value mt = (172.76 ± 0.30) GeV, with σ
and 2σ variance. The vertical black line lies at the threshold below which there is no lower ground state in
the potential. The horizontal line signifies the value below which ξ(µ) turns negative as it runs. [9]

5. Conclusions

In conclusion, we have presented a method for using a state-of-the-art RG improved effective
Higgs potential on curved space, with leading time-dependent curvature corrections for all SM
constituents, that consistently includes Minkowski terms to 3-loops and 1-loop curvature corrections
beyond dS, in order to obtain the most accurate constraints on the Higgs curvature coupling
to date. These are summarised for all inflationary models considered as ξEW ≳ 0.06, where
their mild dependence on the top quark mass is evident from figure 3. Moreover, the different
inflationary models led to approximately degenerate results, due to their tuning according to the
CMB measurements and the use of the dS approximation at certain steps of the calculation. Finally,
as properly explained in [9], these results are independent of the total duration of inflation beyond
60 e-foldings, with predominant bubble production taking place close to the end of inflation.
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