Feasibility study of an accelerator neutrino experiment in China

Jian Tang, Sampsa Vihonen* and Yu Xu
School of Physics, Sun Yat-sen University,
No. 135 Xingang Xi Road, 510275 Guangzhou, P.R. China
E-mail: sampsa@mail.sysu.edu.cn

Future accelerator neutrino experiments will provide a powerful tool to measure standard oscillation parameters and search for new physics. In this context, we discuss the prospects of building an accelerator neutrino experiment in China. The feasibility of such facilities is investigated by evaluating their prospects to the standard mixing parameters. As an example, we consider an SPPC-based neutrino beamline and CJPL-based neutrino detector with 1736 km baseline length. We find this setup able to significantly improve the precision on δ_{CP}, θ_{23} and Δm^2_{31}.

*** The European Physical Society Conference on High Energy Physics (EPS-HEP2021), ***
*** 26-30 July 2021 ***
*** Online conference, jointly organized by Universitamburg and the research center DESY ***

*Speaker

© Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0). https://pos.sissa.it/
1. Introduction

China has rapidly growing infrastructure dedicated to accelerator-based nuclear and particle physics [1]. China Spallation Neutron Source (CSNS), China initiative for Advanced Driven Systems (CiADS) and High Intensity Accelerator Facility (HIAF) in the southern province of Guangdong, for example, are major accelerator facilities with applications ranging from neutron scattering techniques to nuclear transmutation and heavy ion physics. Institute of Modern Physics of Chinese Academy of Sciences (CAS-IMP) in Lanzhou, Gansu, and Proton Linear Accelerator Institute of Nanjing University in Nanjing, Jiangsu, are other notable Chinese laboratories specialized in accelerator-based physics. At the same time, a next-generation collider facility CEPC and its high-energy upgrade SPPC are planned to be constructed in Beijing in the northeast of China. Last but not least, China is home to two major underground physics laboratories designed for investigating fundamental sciences: China Jinping Laboratory (CJPL) in central Sichuan is currently the deepest underground facility in the world and Jiangmen Underground Neutrino (JUNO) Observatory will soon commission the largest liquid scintillator neutrino detector near Kaiping, Guangdong.

In this proceeding, we briefly contemplate the prospects of studying precision neutrino oscillation physics with a future accelerator neutrino experiment in China. We discuss the site selection aspect with respect to the geographical locations of the existing research infrastructure in China. As a concrete example, we consider an experiment configuration where a neutrino beamline is established at the SPPC injector facility and detector at CJPL, giving rise to 1736 km baseline.

This proceeding is organized as follows: We summarize the key points of the laboratory survey in section 2, discuss the physics prospects of the considered setups in the precision measurement of θ_{23}, δ_{CP} and Δm^{2}_{31} in section 3 and leave concluding remarks in section 4.

2. Survey of research infrastructure in China

China is currently home to a number of accelerator facilities with a range of interests in applied and basic sciences. There are also two major underground research laboratories. If these accelerator and underground laboratories were used in a future accelerator neutrino experiment, the available baseline lengths would range from 84 km to 1742 km. A summary of baseline lengths and required neutrino beam energies to reach the first and second oscillation maximum in these facilities is provided in table 1.

Table 1: Characteristics of the five accelerator laboratories and two underground laboratories in China. Listed items include the baseline lengths and the required neutrino energy to reach first and second oscillation maximum, assuming $\Delta m^{2}_{31} \approx 2.517 \times 10^{-3}$ eV2. This table is taken from Ref. [1].

<table>
<thead>
<tr>
<th>Accelerator facility</th>
<th>JUNO</th>
<th></th>
<th></th>
<th>CIPL</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Baseline</td>
<td>1st maximum</td>
<td>2nd maximum</td>
<td>Baseline</td>
<td>1st maximum</td>
<td>2nd maximum</td>
</tr>
<tr>
<td>CAS-IMP</td>
<td>1742 km</td>
<td>3.5 GeV</td>
<td>1.2 GeV</td>
<td>894 km</td>
<td>2.7 GeV</td>
<td>600 MeV</td>
</tr>
<tr>
<td>CiADS</td>
<td>146 km</td>
<td>300 MeV</td>
<td>100 MeV</td>
<td>1389 km</td>
<td>1.8 GeV</td>
<td>940 MeV</td>
</tr>
<tr>
<td>CSNS</td>
<td>84 km</td>
<td>170 MeV</td>
<td>60 MeV</td>
<td>1329 km</td>
<td>2.8 GeV</td>
<td>900 MeV</td>
</tr>
<tr>
<td>Nanjing</td>
<td>1189 km</td>
<td>2.4 GeV</td>
<td>800 MeV</td>
<td>1693 km</td>
<td>3.4 GeV</td>
<td>1.1 GeV</td>
</tr>
<tr>
<td>SPPC</td>
<td>1814 km</td>
<td>3.7 GeV</td>
<td>1.2 GeV</td>
<td>1736 km</td>
<td>3.5 GeV</td>
<td>1.2 GeV</td>
</tr>
</tbody>
</table>
An attractive candidate for a future neutrino beam facility site is the SPPC injector chain, as portrayed in figure 1. SPPC is part of the next-generation collider physics program CEPC-SPPC, which is currently under planning in China [2]. The injector chain consists of a proton linac (p-Linac), rapid cycling synchrotron (p-RCS), medium-stage synchrotron (MSS) and final stage synchrotron (SS). Each synchrotron is capable of diverting a proton beam of 3.2 MW to non-collider programs.

3. Precision measurements on δ_{CP}, θ_{23} and Δm^2_{31} with PROMPT

In this proceeding, we present the expected sensitivities for an accelerator neutrino experiment based at the SPPC injector facility in Beijing and CJPL in Sichuan. For future reference, we call this setup $PRecisiOn Measurements and Physics with Tau neutrinos$ (PROMPT) due to its affinity to ν_τ physics and perceived physics goals. PROMPT is simulated as a long-baseline neutrino experiment with muon-decay-based beam of 25 GeV parent energy and 50 kton hybrid detector based on magnetized iron and emulsion cloud chamber technologies.

The expected sensitivities for CP violation discovery as well as for precision measurement of θ_{23}, δ_{CP} and Δm^2_{31} are shown in figure 2. The simulations are conducted with GLoBES. The sensitivity to CP violation is presented as a function of δ_{CP} values, whereas the precisions on θ_{23}, δ_{CP} and Δm^2_{31} are indicated with respect to the values presently favoured by the world data [3]. The best-fit values are also shown at 1 σ CL with grey regions. The sensitivities for PROMPT are shown both with and without sensitivity to ν_τ. The corresponding sensitivities expected for DUNE and T2HK as well as the combination of the three configurations are also included. The sensitivities predicted for PROMPT show excellent precision to δ_{CP}, θ_{23} and Δm^2_{31} both as a standalone experiment and in combination of the simulated data from the superbeam experiments T2HK and DUNE.
4. Summary and outlook

China offers a great landscape in research infrastructure dedicated to nuclear and particle physics. In this proceeding, we contemplated the possibility of constructing a future accelerator neutrino experiment in China. As a concrete example, we considered an experiment setup at the SPPC and CJPL sites, which could form a baseline length of 1736 km. We present the expected sensitivities to CP violation and the precision of θ_{23}, δ_{CP} and Δm^2_{31} in this setup, which we call PROMPT. We find that PROMPT could significantly improve the experimental precision on the standard mixing parameters.

References

