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Jet tomography in hot QCD medium with deep learning
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With deep learning techniques, the degree of modification of energetic jets that traversed hot QCD
medium can be identified on a jet-by-jet basis. Due to the strong correlations between the degree
of jet modification and its traversed length in the medium, we demonstrate the power of our novel
method to locate the creation point of a dĳet pair in the nuclear overlap region. In particular, jet
properties, such as jet width and orientation can serve as additional handles to locate the creation
points to a higher level of precision, which constitutes a significant development towards the
long-standing goal of using jets as tomographic probes of the quark-gluon plasma.
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1. Introduction

Jets are narrow cones of hadrons that are produced in hard QCD processes in high-energy
particle collisions. In heavy-ion collisions, they form concurrently with the creation of hot and
dense QCD matter, known as the quark-gluon plasma (QGP), which behaves like a nearly perfect
liquid. When passing through this medium, partonic jet modes will experiencemomentum diffusion
and energy loss. The latter phenomenon, known as jet quenching, occurs by the radiation of soft
particles towards large angles [1–4]. Unique properties of the medium are contained in the detailed
modifications of these hard probes, which turn them into useful tools, and therefore tremendous
theoretical and experimental effort is being devoted on them.

Using jets as differential probes of the evolution of the QGP created in heavy-ion collisions, aka
jet tomography, is a long-term quest [5–10]. The medium-induced modifications of jets follow from
the local properties of the medium along the jet trajectory. The capability to unambiguously capture
the details of these interactions, for each individual jet, would lead to unprecedented precision in
determining local properties of the fluid, including flow [11, 12], path-length dependence of jet
modifications [13] and improved possibility of observing deconfined quasi-particles as degrees of
freedom in the QGP [14–16].

In this paper we employ deep learning techniques to estimate the energy loss suffered by a given
reconstructed jet at ?) and cone size ' measured in a heavy-ion collision. Having this extracted
knowledge at hand allows for many interesting applications, such as revealing more pronounced
substructuremodifications of jets [17], getting access to the genuine configuration profile of jets over
the nuclear overlap region in the collision, both with respect to their creation points and orientations
[18] and using jets as tomographic probes of the QGP, which is the main focus of this proceedings.

First, we demonstrate the power of our method to constrict the creation-point of a dĳet pair over
the nuclear overlap region by constraining the jet energy loss. Then, we present the improvement
of the combination of the extraction of the lost energy with additional accessible knowledge about
the jet width or the jet orientation with respect to the event plane of the collision. They allow to
constrain the path length dependence separately for jets of specific width or jets traveling parallel
and transverse to the event plane of the collisions, which refine the path to experimentally pinning
down the original creation point of a dĳet pair. These improvements contribute to the set of tools
aimed at exploiting energetic jets as tomographic probes of the QGP.

2. Jet energy loss with deep learning

We first estimate, on a jet-by-jet basis, the amount of jet energy loss during the passage through
a hot QCD medium, quantified through the variable j = ?) /?initial

)
within the hybrid strong/weak

coupling model [19–21]. ?) is the measurable transverse momentum of a given jet in the presence
of a medium, and ?initial

)
is the transverse momentum of the same jet would have had, had there

been no medium. For further details on how to establish such a correspondence, see [17]. In the
hybrid model, the vacuum evolution is factorized from the interactions with the medium. Other jet
quenching models with this general picture should also allow for such a jet-by-jet correspondence
[17, 18].
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Figure 1: Creation point distributions of jets in the transverse plane for different ranges of the predicted j? .

Within the hybrid model, we generate around 250,000 jets at √B## = 5.02 TeV for PbPb
collisions at 0-5% centrality, which are reconstructed with FastJet 3.3.1 [22] using the anti-:)
algorithm [23] with reconstruction parameter ' = 0.4, |[ | < 2 and measured ?) > 100 GeV.
80% of these samples are used for the training of our algorithm and the remaining 20% are used
validation. We train the convolutional neural network (CNN) to predict the energy loss ratio j

from the jet image in a supervised manner. The trained CNN can predict j over a wide range with
reasonable accuracy. For more details see Ref. [17].

3. Jet tomography

The traversed length by a given jet in QGP is strongly correlated to its energy loss and
modifications. Specifically, by selecting jets suffering different amounts of energy loss j extracted
by our network, we are actually selecting jets traversing different lengths and consequently created
at different positions in the transverse plane of the medium. This new capability paves the way to
extract properties of QGP through jet tomographic applications with unprecedented precision.1

To corroborate this statement, we can look at the jet creation-points distribution in the transverse
plane {G, H} sliced in j, which is shown in Fig. 1. It’s worth pointing out, again, that the pair values
of creation positions {G, H} are not extracted by our algorithm, but taken directly from the Monte
Carlo instead. One can see that jets of the little quenched class, 0.95 < j? < 1, were created within
a ring structure at the periphery of the nuclear overlap collision region. The creation points move
towards the centre of the initial geometry gradually as energy loss increases. It’s worth mentioning
that for the most quenched class, 0.25 < j? < 0.6, the distribution becomes more spread than that

1Alternatively, the degree of medium induced jet modification can be reasonably estimated from the ratio of the jet
?) over that of a recoiling colorless trigger boson, although their correlation is not tight due to sizeable out-of-cone
radiation even in vacuum [8]. Besides, a recent tomographic study based on spatial-temporal gradient of QGP also gives
clue to the creation point of an energetic jet [9].
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Figure 2: Creation point distributions in the transverse plane for jets with measured '6 < 0.1 (left column)
versus '6 > 0.1 (middle column), and their difference (right column). Jets are inclusive in j (upper row),
in little quenched class with 0.95 < j? < 1 (middle row) and very quenched class with 0.6 < j? < 0.75
(lower row).

for the neighbour less quenched class, 0.6 < j? < 0.75. The reason can be attributed to that the
most quenched jets have had to go through the largest traversed lengths, which correspond to jets
that were created at the periphery and flew inwards, towards the center of the QGP. This observation
inspires us to consider the jet orientation as an additional handle in a refined study. We will come
back to this direction a bit later in the non-central collisions.

We have shown that with the extracted energy loss we have control of how long the jets have
traversed within the QGP, which is an important step forward towards using jets as tomographic
probes. One possible improvement of the above analysis could include more differential sample
selections based on measurable jet properties, such as jet width '6 within the Soft-Drop proce-
dure [24], with parameters Icut = 0.1 and V = 0. Given the dependence of energy loss on jet
width, and its relation to selection bias, as discussed in Ref. [17], it is natural to expect that jets
with different (initial) widths, and the same amount of the energy loss, will have traversed different
lengths on average. To support this picture, we show in Fig. 2 the creation point distributions in
the transverse plane for jets with a measured (this is, final) '6 smaller or larger than 0.1. In the top
row (inclusive in j), we see that narrower jets tend to pass the selection even if they were created
deep inside the medium, while wider jets are pushed towards the surface in comparison. The little
quenched jets, 0.95 < j? < 1, (middle row) agree with this picture as the more pronounced ring
structure shows. For the very quenched jets, 0.6 < j? < 0.75, one can see the reverse of such
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Figure 3: Creation point distributions of jets in the transverse plane in 30-40% centrality for different ranges
of the predicted j? in four columns, respectively. The in-plane jets propagating left (blue) and right (red)
are shown in the upper row and the out-of-plane jets propagating up (orange) and down (green) are shown
in the lower row. The 2-D histogram in the bottom of each plot is the distribution of the inclusive in-plane
(upper row) and out-of-plane (lower row) jets in this centrality.

ordering as shown in the lower row, which is similar as in Fig. 1, since to get such quenched, narrow
jets tend to be created towards the periphery and flow inwards.

To improve on locating the creation-point of a dĳet pair in the nuclear overlap region more
precisely, one could also account for the jet orientation with respect to the event plane of the
collision, which is determined by the second azimuthal harmonic of the particle distribution. For
demonstration purposes, we will consider jets propagating in-plane, i.e. parallel to the event
plane, and out-of-plane, i.e. transverse to the event plane, generated at 30-40% centrality at
√
B## = 5.02 TeV for PbPb collisions instead. In Fig. 3 we show the results of the production-

points distribution for around 900,000 jets. In the upper (lower) row we consider the jets that
propagate in-plane (out-of-plane), which means they flow approximately along the short (long)
axis of the nuclear overlap region. This corresponds to the jets with distinctly positive (negative)
E2 =

(
?2
) ,G − ?2

) ,H

) / (
?2
) ,G + ?2

) ,H

)
. In the bottom of each sub-figure in the upper (lower) row

we also show the production-point distribution of the in-plane (out-of-plane) jet inclusive in j?.
We can further select jets according to its propagation direction: either left (in blue) or right (in
red) for the in-plane jets, and either up (in orange) or down (in green) for the out-of-plane jets.
The histograms in each of fourth column show the results inclusive in j? and corresponds to the
production-point distributions if we had no clue to the degree of jet energy loss. One can see some
degree of separation, but the overlap is still quite large. This situation improves radically with the
help of our knowledge of predicted j?. The histograms in each of the first three columns display
the production-point distributions for jets belonging to different quenching classes.

The third column of Fig. 3 shows results for little quenched jets, with 0.95 < j? < 1. To
belong to this class, jets have to have traversed merely a short length through the QGP. Focusing on
the out-of-plane jets first in the lower row, one can see that the production points of jets propagating
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upwards are predominantly localized in the upper hemisphere of the overlap region (and vice versa
for jets propagating downwards). This reasoning also applies reversely for jets belonging to the very
quenched class, with 0.25 < j? < 0.75, displayed in the first column. One can see that these very
quenched jets propagating upwards have had to traverse a long length in the QGP, or analogously
through a hot region. Consequently their production points will be predominantly localized in the
lower hemisphere instead (and vice versa for jets propagating downwards). As the bridge between
the little quenched and very quenched jets, the ones with 0.75 < j? < 0.95 shows the notably
overlapping transition region in second column. Obviously, similar arguments could also apply for
the in-plane jets displayed in the upper row of Fig. 3.

4. Summary

In this proceedings, we review the power of our novel deep learning techniques to locate with
precision the jet creation point in the transverse plane, by selecting jets according to jet energy
loss j, width '6 and orientation, which constitutes a significant step towards the exploitation of
tomographic power of energetic jets. In future work, the tomographic power is expected to be further
improved by considering the interplay between the jet and the local properties of the medium, e.g.,
the local hydrodynamic flow [11, 12] or spatial-temporal gradients [9, 10, 12], which determine
preferred directions and deformed radiation spectra for the soft emissions from the jet. A direct
extraction of the traversed length of energetic jets in the QGP is highly desirable to push forward
this series of studies.
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